【題目】已知二次函數(shù)y=﹣ x2﹣3x﹣ ,設(shè)自變量的值分別為x1 , x2 , x3 , 且﹣3<x1<x2<x3 , 則對應(yīng)的函數(shù)值y1 , y2 , y3的大小關(guān)系是( )
A.y1>y2>y3
B.y1<y2<y3
C.y2>y3>y1
D.y2<y3<y1

【答案】A
【解析】解:拋物線的對稱軸為直線x=﹣ =﹣3,
因為﹣3<x1<x2<x3 ,
而拋物線開口向下,
所以y1>y2>y3
故選A.
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出點B的對應(yīng)點B1的坐標(biāo);
(2)畫出△ABC繞點A按逆時針旋轉(zhuǎn)90°后的△AB2C2 , 并寫出點C的對應(yīng)點C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.

(1)請直接寫出點A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),B(b,3),C(4,0),且滿足(a+b)2+| b-3|=0,線段ABy軸于F點.

(1)求點A、B的坐標(biāo).

(2)求點F的坐標(biāo);

(3)P為坐標(biāo)軸上一點,若△ABP的面積和△ABC的面積相等,求出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.

(1)請直接寫出點A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AD平分BAC,DGBC且平分BC,DEABE,DFACF

1)求證BE=CF

2)如果AB=8,AC=6,AE、BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,

求:(1)在圖(1)中∠B+D=?(2)在圖(2)中∠B+E1+D=?(3)在圖(3)中∠B+E1+E2+…+En1+En+D=?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側(cè)距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側(cè),距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側(cè)面爬行的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是

查看答案和解析>>

同步練習(xí)冊答案