【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOE=120°,其中正確結(jié)論有_____;(填序號(hào)).
【答案】①②③⑤
【解析】
①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;
③根據(jù)②△CQB≌△CPA(ASA),可知③正確;
④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;
⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,即∠AOE=180°-60°=120°可知⑤正確.
∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正確,
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②正確,
∵△CQB≌△CPA,
∴AP=BQ③正確,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④錯(cuò)誤;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等邊△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
∴∠AOE=180°-60°=120°
∴⑤正確.
故正確的有:①②③⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過C作AE的垂線CF,垂足為F,過B作BD⊥BC交CF的延長(zhǎng)線于點(diǎn)D
(1)試說明:AE=CD;
(2)AC=12cm,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+4m(m>0)的圖象經(jīng)過點(diǎn)B(p,2m),其中m>0.
(1)若m=1,且k=﹣1,求點(diǎn)B的坐標(biāo);
(2)已知點(diǎn)A(m,0),若直線y=kx+4m與x軸交于點(diǎn)C(n,0),n+2p=4m,試判斷線段AB上是否存在一點(diǎn)N,使得點(diǎn)N到坐標(biāo)原點(diǎn)O與到點(diǎn)C的距離之和等于線段OB的長(zhǎng),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)為斜邊的中點(diǎn),為邊一動(dòng)點(diǎn),沿著所在的直線對(duì)折得到.若與重合部分的面積為的面積一半,此時(shí)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),在矩形中,兩邊、分別在軸和軸上,且點(diǎn)滿足:.
(1)求點(diǎn)的坐標(biāo)(___,_____);
(2)若過點(diǎn)的直線與矩形的邊交于點(diǎn),且將矩形的面積分為兩部分,
①求直線的解析式;
②在直線確定一點(diǎn),使得的面積等于矩形的面積,求點(diǎn)的坐標(biāo);
(3)在線段上,,在坐標(biāo)軸上,為(2)中直線上一動(dòng)點(diǎn),若四點(diǎn)、、、構(gòu)成平行四邊形,直接寫出的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了全面推進(jìn)素質(zhì)教育,增強(qiáng)學(xué)生體質(zhì),豐富校園文化生活,高新區(qū)某校將舉行春季特色運(yùn)動(dòng)會(huì),需購(gòu)買A,B兩種獎(jiǎng)品.經(jīng)市場(chǎng)調(diào)查,若購(gòu)買A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買A種獎(jiǎng)品1件和B種獎(jiǎng)品3件,共需55元.
(1)求A、B兩種獎(jiǎng)品的單價(jià)各是多少元;
(2)運(yùn)動(dòng)會(huì)組委會(huì)計(jì)劃購(gòu)買A、B兩種獎(jiǎng)品共100件,購(gòu)買費(fèi)用不超過1160元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,運(yùn)動(dòng)會(huì)組委會(huì)共有幾種購(gòu)買方案?
(3)在第(2)問的條件下,設(shè)計(jì)出購(gòu)買獎(jiǎng)品總費(fèi)用最少的方案,并求出最小總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“奇巧數(shù)”,如12=,20=,28=,……,因此12,20,28這三個(gè)數(shù)都是奇巧數(shù)。
(1)52,72都是奇巧數(shù)嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2n,2n+2(其中n為正整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的奇巧數(shù)是8的倍數(shù)嗎?為什么?
(3)研究發(fā)現(xiàn):任意兩個(gè)連續(xù)“奇巧數(shù)”之差是同一個(gè)數(shù),請(qǐng)給出驗(yàn)證。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓E是三角形ABC的外接圓, ∠BAC=45°,AO⊥BC于O,且BO=2,CO=3,分別以BC、AO所在直線建立x軸.
(1)求三角形ABC的外接圓直徑;
(2)求過ABC三點(diǎn)的拋物線的解析式;
(3)設(shè)P是(2)中拋物線上的一個(gè)動(dòng)點(diǎn),且三角形AOP為直角三角形,則這樣的點(diǎn)P有幾個(gè)?(只需寫出個(gè)數(shù),無需解答過程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com