【題目】如圖,點為平面直角坐標系的原點,在矩形中,兩邊、分別在軸和軸上,且點滿足:

1)求點的坐標(___,_____);

2)若過點的直線與矩形邊交于點,且將矩形的面積分為兩部分,

①求直線的解析式;

②在直線確定一點,使得的面積等于矩形的面積,求點的坐標;

3在線段上,,在坐標軸上,為(2)中直線上一動點,若四點、、構成平行四邊形,直接寫出的坐標.

【答案】1)(,-4);(2)①y=,②(,)或(0,4);(3)(3,0)或(,0)或(0,6)或(02

【解析】

1)根據(jù)非負數(shù)性質可求出a,b;

2)①結合圖,根據(jù)三角形面積關系求出P的坐標,用待定系數(shù)法求解;

②根據(jù)題意作圖,可得Q的位置有兩種情況:根據(jù)軸對稱性質可得一種在y軸上;根據(jù)SACQ1=S梯形AOEQ1-SAOC-SCEQ1=S矩形ABCO可求出第二種情況;

3)根據(jù)平行四邊形判定,過Dy軸的平行線與PB相交于N2,將OD沿AB平移至M1N1或沿y軸平移至M3N3或至M2N2可得到以OD為邊的平行四邊形;當N4E∥AD,N4E=AD時,OD∥N4M4 ,ODN4=M4,也可得到以OD為邊的平行四邊形;分別可求出M的坐標.

解:(1)因為

所以=0,

所以,b=-4

所以B-4

2)①如圖,由已知可得△PBC的面積是:=

所以PC=

所以OP=OC-PC=

所以P0

設直線BP的解析式是y=kx+b

解得

所以BP的解析式是y=

②如圖,Q的位置有兩種情況:

第一種:Q2位置

直線y=y軸的交點是Q20,4,

因為A0,-4

所以Q2A關于x軸對稱

所以三角形ACQ2的面積=2SAOC=矩形ABCO的面積.

第二種:Q1位置

Q1

SACQ1=S梯形AOEQ1-SAOC-SCEQ1=S矩形ABCO

解得

所以

所以Q1,

所以Q的坐標是(,)或(0,4

3)如圖,過Dy軸的平行線與PB相交于N2,將OD沿AB平移至M1N1或沿y軸平移至M3N3或至M2N2可得到以OD為邊的平行四邊形;當N4E∥AD,N4E=AD時,OD∥N4M4 ,ODN4=M4,也可得到以OD為邊的平行四邊形;

因為AD=

所以 AD=

所以BD=3

所以M13,0),M3,0

N2,2

所以DN2=2+4=6

所以OM2=6

所以M20,6

N4EADN4E=AD=時,可得E0,6),

EM4=OA=4,M40,2)時,可得△N4EM4≌△DAOSAS

此時,∠N4M4E=∠AOD

所以∠N4M4O=∠DOE

所以N4M4OD

此時可得到OD為邊的平行四邊形;

綜合上述,M的坐標是:(30)或(,0)或(0,6)或(02

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】近年來,由于土地沙化日漸加劇,沙塵暴頻繁,嚴重影響國民生活.為了解某地區(qū)土地沙化情況,環(huán)保部門對該地區(qū)進行了連續(xù)四年跟蹤觀測,所記錄的近似數(shù)據(jù)如下表:

觀測時間

1

2

3

4

沙漠面積

90萬畝

90.2萬畝

90.4萬畝

90.6萬畝

1)根據(jù)表中提供的信息,在不采取任何措施的情況下,試定出該地區(qū)沙漠面積y(萬畝)與x(年數(shù))之間的關系式(用含x的式子表示y),并計算到第20年時該地區(qū)的沙漠面積;

2)為了防沙治沙,政府決定投入資金,鼓勵農(nóng)民植樹種草,經(jīng)測算,植樹1畝需資金200元,種草1畝需資金100元.某組農(nóng)民計劃在一年內(nèi)完成2400畝綠化任務.在實施中,由于實際情況所限,植樹完成了計劃的90%,種草超額完成了計劃的20%,恰好完成了計劃的綠化任務,那么所節(jié)余的資金還能植樹多少畝?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.

1)這兩次各購進這種襯衫多少件?

2)若第一批襯衫的售價是200/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD,EBC邊上動點P2厘米/秒的速度從點A出發(fā),沿AED的邊按照AEDA的順序運動一周.設點PA出發(fā)經(jīng)xx0)秒后ABP的面積是y

1)若AB=6厘米,BE=8厘米當點P在線段AE上時,y關于x的函數(shù)表達式

2)已知點EBC的中點,當點P在線段EDAD上時,y關于x的函數(shù)表達式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ.以下五個結論:①ADBE;②PQAE;③APBQ;④DEDP;⑤∠AOE120°,其中正確結論有_____;(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,BAC=90°,AB=AC,DABC外一點,且AD=AC,則BDC的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長為1,ABC的三個頂點均在格點上.

1)將ABC向右平移3個單位長度,再向下平移1個單位長度,畫出對應圖形A′B′C′;

2)寫出A′B′、C′坐標;

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F

(1)求證:AB=CF

(2)BCAF滿足什么數(shù)量關系時,四邊形ABFC是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,繞點順時針旋轉得到,其中點與點、點與點是對應點,連接,且、在同一條直線上,則的長為(

A. 3 B. C. 4 D.

查看答案和解析>>

同步練習冊答案