精英家教網 > 初中數學 > 題目詳情

【題目】在學習完第十二章后,張老師讓同學們獨立完成課本56頁第9題:“如圖1,,,,垂足分別為,,,求的長.

1)請你也獨立完成這道題:

2)待同學們完成這道題后,張老師又出示了一道題:

在課本原題其它條件不變的前提下,將所在直線旋轉到的外部(如圖2),請你猜想,三者之間的數量關系,直接寫出結論:_______.(不需證明)

3)如圖3,將(1)中的條件改為:在中,,三點在同一條直線上,并且有∠BEC=∠ADC=∠BCA=,其中為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請證明;若不成立,請說明理由:

【答案】1;(2;(3)、(2)中的猜想還成立,證明見解析.

【解析】

1)利用AAS定理證明△CEB≌△ADC,根據全等三角形的性質、結合圖形解答.

2)繼續(xù)利用AAS定理證明△CEB≌△ADC,根據全等三角形的性質、結合圖形解答.

3)還是利用AAS定理證明△CEB≌△ADC,根據全等三角形的性質、結合圖形解答.

1

,

,

中,

,

,

,

,,

;

2,

證明:∵BECE,ADCE,

∴∠E=∠ADC90°,

∴∠EBC+∠BCE90°.

∵∠BCE+∠ACD90°,

∴∠EBC=∠DCA

在△CEB和△ADC中,

,

∴△CEB≌△ADCAAS),

BEDCCEAD,

DECEDEADBE

3)、(2)中的猜想還成立,

證明:,,

中,

,

,

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】2018年某市高中招生體育考試規(guī)定:九年級男生考試項目有A、B、C、D、E五類:其中A1000米跑必考項目;B:跳繩;C:引體向上;D:立定跳遠;E50米跑,再從B、C、D、E中各選兩項進行考試.

若男生甲第一次選一項,直接寫出男生甲選中項目E的概率.

若甲、乙兩名九年級男生在選項的過程中,第一次都是選了項目E,那么他倆第二次同時選擇跳繩或立定跳遠的概率是多少?請用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標;

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一把三角尺放在邊長為2的正方形ABCD(正方形四個內角為90°,四邊都相等),并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC交于點Q。

探究:(1)當點Q在邊CD 上時,線段PQ 與線段PB之間有怎樣的大小關系?試證明你觀察得到結論;

(2)當點Q在邊CD 上時,如果四邊形 PBCQ 的面積為1,求AP長度;

(3)當點P在線段AC 上滑動時,PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點Q的位置,并求出相應的AP的長;如果不可能,試說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程①,②,③,④為實數),⑤,⑥其中一定是一元二次方程的個數為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點CCDAFAF延長線于點D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABM、N兩點,DMEN相交于點F

1)若△CMN的周長為15cm,求AB的長;

2)若∠MFN=70°,求∠MCN的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P

1)觀察猜想:①線段AEBD的數量關系為_________;②APC的度數為_______________

2)數學思考:如圖2,當點C在線段AB外時,(1)中的結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明

3)拓展應用:如圖3,分別以AC、BC為邊在AB同側作等腰直角三角形ACD和等腰直角三角形BCE,其中ACD=∠BCE=90°,CA=CD,CB=CE,連接AE=BD交于點P,則線段AEBD的關系為________________

查看答案和解析>>

同步練習冊答案