【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以ACBC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AEBD交于點(diǎn)P

1)觀察猜想:①線段AEBD的數(shù)量關(guān)系為_________;②APC的度數(shù)為_______________

2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明

3)拓展應(yīng)用:如圖3,分別以ACBC為邊在AB同側(cè)作等腰直角三角形ACD和等腰直角三角形BCE,其中ACD=∠BCE=90°,CA=CD,CB=CE,連接AE=BD交于點(diǎn)P,則線段AEBD的關(guān)系為________________

【答案】1AE=BD.∠APC=60°;(2)成立,見(jiàn)詳解;(3AE=BD

【解析】

1)觀察猜想:①證明ACE≌△DCBSAS),可得AE=BD,∠CAE=BDC;

②過(guò)點(diǎn)CAE,BD作垂線,由三角形全等可得高相等,再根據(jù)角分線判定定理,推出PC平分∠APB,即可求出∠APC的度數(shù);

2)數(shù)學(xué)思考:結(jié)論成立,證明方法類(lèi)似;

3)拓展應(yīng)用:證明ACE≌△DCBSAS),即可得AE=BD.

解:(1)觀察猜想:結(jié)論:AE=BD.∠APC=60°

理由: ①∵△ADC,ECB都是等邊三角形,
CA=CD,∠ACD=ECB=60°CE=CB,
∴∠ACE=DCB
∴△ACE≌△DCBSAS),
AE=BD;

②由①得∠EAC=BDC,
∵∠AOC=DOP,
∴∠APB=AOC+EAC=180°-60°= 120°

過(guò)過(guò)點(diǎn)CAEBD作垂線交于點(diǎn)FG

∵由①知ACE≌△DCB

CF=CG

CP為∠APB的角平分線

∴∠APC=60°;

2)數(shù)學(xué)思考:結(jié)論仍然成立.

①∵△ADC,ECB都是等邊三角形,
CA=CD,∠ACD=ECB=60°,CE=CB
∴∠ACE=DCB
∴△ACE≌△DCBSAS),
AE=BD

②由①得∠AEC=DBC,
∴∠CEA+PEB=CBD+PEB=60°,
∴∠APB=CBD+CBE+PEB=120°

過(guò)過(guò)點(diǎn)PAC,BC作垂線交于點(diǎn)HI

∵由①知ACE≌△DCB

PH=PI

CP為∠APB的角平分線

∴∠APC=60°;

3)∵△ADCECB都是等腰直角三角形,
CA=CD,∠ACD=ECB=90°,CE=CB

∴∠ACB+BCE=ACB+ACD
∴∠ACE=DCB
∴△ACE≌△DCBSAS),
AE=BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)完第十二章后,張老師讓同學(xué)們獨(dú)立完成課本56頁(yè)第9題:“如圖1,,,,垂足分別為,,,求的長(zhǎng).

1)請(qǐng)你也獨(dú)立完成這道題:

2)待同學(xué)們完成這道題后,張老師又出示了一道題:

在課本原題其它條件不變的前提下,將所在直線旋轉(zhuǎn)到的外部(如圖2),請(qǐng)你猜想,三者之間的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論:_______.(不需證明)

3)如圖3,將(1)中的條件改為:在中,,,三點(diǎn)在同一條直線上,并且有∠BEC=∠ADC=∠BCA=,其中為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(- 1,5)B(- 1,0),C(- 4,3)

1)求出△ABC的面積;

2)在圖中作出△ABC關(guān)于軸的對(duì)稱(chēng)圖形△A1B1C1;

3)設(shè)Py軸上的點(diǎn),要使得點(diǎn)P到點(diǎn)A,C的距離和最小,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C90°,AC3,BC4,∠ABC和∠BAC的角平分線的交點(diǎn)是點(diǎn)D,則△ABD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AC8cm,BC6cm.點(diǎn)PA點(diǎn)出發(fā)沿ACB路徑以每秒1cm的運(yùn)動(dòng)速度向終點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)QB點(diǎn)出發(fā)沿BCA路徑以每秒vcm的速度向終點(diǎn)A運(yùn)動(dòng).分別過(guò)PQPEABE,QFABF

1)設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t   時(shí),直線BP平分△ABC的面積.

2)當(dāng)QBC邊上運(yùn)動(dòng)時(shí)(t0),且v1時(shí),連接AQ、連接BP,線段AQBP可能相等嗎?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

3)當(dāng)Q的速度v為多少時(shí),存在某一時(shí)刻(或時(shí)間段)可以使得△PAE與△QBF全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廊橋是我國(guó)古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABD內(nèi)接于圓O,BAD=60°,AC為圓O的直徑.ACBDP點(diǎn)且PB=2,PD=4,AD的長(zhǎng)為( )

A. 2 B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,CD是弦,ABCDE,OFACF,BE=OF.

(1)求證:OFBC;

(2)求證:△AFO≌△CEB;

(3)若EB=5cm,CD=10cm,設(shè)OE=x,求x值及陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn),直線軸、軸分別交于點(diǎn),,的解析式為,的解析式為,兩直線的交點(diǎn)。

1)求直線的解析式;

2)求四邊形的面積;

3)當(dāng)時(shí),直接寫(xiě)出的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案