【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,A′C′交AB于點E.若AD=BE,則△A′DE的面積是 .
【答案】6
【解析】解:Rt△ABC中,由勾股定理求AB= =10, 由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=10﹣2x,
∵△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,
∴∠A′=∠A,∠A′DE=∠C=90°,
∴△A′DE∽△ACB,
∴ = ,即 = ,解得x=3,
∴S△A′DE= DE×A′D= ×(10﹣2×3)×3=6,
故答案為:6.
在Rt△ABC中,由勾股定理求得AB=10,由旋轉(zhuǎn)的性質(zhì)可知AD=A′D,設(shè)AD=A′D=BE=x,則DE=10﹣2x,根據(jù)旋轉(zhuǎn)90°可證△A′DE∽△ACB,利用相似比求x,再求△A′DE的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的三邊長分別為30,48,50,以它的三邊中點為頂點組成第一個新三角形,再以第一個新三角形三邊中點為頂點組成第二個新三角形,如此繼續(xù),則第6個新三角形的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點點P第1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位至點,第4次向右跳動3個單位至點,第5次又向上跳動1個單位至點,第6次向左跳動4個單位至點,照此規(guī)律,點P第100次跳動至點的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB=40cm.
(1)如圖①,點P沿線段AB自點A向點B以3厘米/秒運(yùn)動,同時點Q線段BA自B點向點A以5厘米/秒運(yùn)動,問經(jīng)過幾秒后P、Q相遇?
(2)幾秒鐘后,P、Q相距16厘米?
(3)如圖②,AO=PO=8厘米,∠POB=40°,點P繞點O以20度/秒的速度順時針旋轉(zhuǎn)一周停止,同時點Q沿直線BA自B點向點A運(yùn)動,假若P、Q兩點能相遇,求Q運(yùn)動的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BC中,AC=BC,點D、E分別是邊AB、AC的中點.延長DE到點F,使DE=EF,得四邊形ADCF.若使四邊形ADCF是正方形,則應(yīng)在△ABC中再添加一個條件為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在所給圖形中:
⑴求證:∠BDC=∠A+∠B+∠C;
⑵如果點D與點A分別在線段BC的兩側(cè),猜想∠BDC、∠A、∠B、∠C這4個角之間有怎樣的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值
(1)2x-{-3y+[3x-2(3x-y)]},其中x=-1,y=.
(2)5(3a2b-ab2-1)-(ab2+3a2b-5),其中a=,b=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個三角形的關(guān)系是( 。
A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點D是邊BC的中點,點E是邊AB上的任意一點(點E不與點B重合),沿DE翻折△DBE使點B落在點F處,連接AF,則線段AF的長取最小值時,BF的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com