【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,已知折痕AE=cm,且tanEFC=,那么該矩形的周長(zhǎng)為________

【答案】72cm

【解析】在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,

∵△ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,

∴∠AFE=∠D=90°,AD=AF,

∵∠EFC+∠AFB=180°-90°=90°,

∠BAF+∠AFB=90°,

∴∠BAF=∠EFC,

tanEFC=,

∴設(shè)BF=3x、AB=4x,

在Rt△ABF中,AF==5x

∴AD=BC=5x,

∴CF=BC-BF=5x-3x=2x,

tanEFC=

CE=CFtanEFC=2x=x,

DE=CD-CE=4x-x=x

在Rt△ADE中,AD2+DE2=AE2,

即(5x)2+x2=102,

整理得,x2=16,

解得x=4,

∴AB=4×4=16cm,AD=5×4=20cm,

矩形的周長(zhǎng)=2×(16+20)=72cm,

故答案為:72cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,直線a經(jīng)過點(diǎn)A,且BEaEDFaF

1)當(dāng)直線a繞點(diǎn)A旋轉(zhuǎn)到圖1的位置時(shí),求證:①△ABE≌△DAF;②EFBE+DF;

2)當(dāng)直線a繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),試探究EFBEDF具有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明;

3)當(dāng)直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),試問DF、EFBE具有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,不證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);

(3)若BC= 4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABCRtBCD中,∠BAC=∠BDC90°,BC8,ABAC,∠CBD30°,BD4,M,N分別在BD,CD上,∠MAN45°,則△DMN的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(a,0),B(b,0),其中a,b滿足|a+1|+(b﹣3)2=0.

1)填空:a=  b=  ;

2)如果在第三象限內(nèi)有一點(diǎn)M﹣2,m),請(qǐng)用含m的式子表示ABM的面積;

3)在(2)條件下,當(dāng)m=時(shí),在y軸上有一點(diǎn)P,使得BMP的面積與ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在清明小假期舉行促銷活動(dòng),設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤進(jìn)行搖獎(jiǎng)活動(dòng),并規(guī)定顧客每購(gòu)買200元商品,就可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),小明根據(jù)活動(dòng)情況繪制了一個(gè)扇形統(tǒng)計(jì)圖,如圖所示.

(1)求每轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤所獲得購(gòu)物券金額的平均數(shù);

(2)小明做了一次實(shí)驗(yàn),他轉(zhuǎn)了200次轉(zhuǎn)盤,總共獲得5800元購(gòu)物券,他平均每轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得的購(gòu)物券是多少元?

(3)請(qǐng)你說明上述兩個(gè)結(jié)果為什么有差別?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACC′是由△ABB′經(jīng)過位似變換得到的

(1)求出△ACC′△ABB′的相似比,并指出它們的位似中心;

(2)△AEE′△ABB′的位似圖形嗎?如果是,求相似比;如果不是說明理由;

(3)如果相似比為3,那么△ABB′的位似圖形是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們學(xué)過有理數(shù)減法可以轉(zhuǎn)化為有理數(shù)加法來運(yùn)算,有理數(shù)除法可以轉(zhuǎn)化為有理數(shù)乘法來運(yùn)算.其實(shí)這種轉(zhuǎn)化的數(shù)學(xué)方法,在學(xué)習(xí)數(shù)學(xué)時(shí)會(huì)經(jīng)常用到,通過轉(zhuǎn)化我們可以把一個(gè)復(fù)雜問題轉(zhuǎn)化為一個(gè)簡(jiǎn)單問題來解決.

例如:計(jì)算

此題我們按照常規(guī)的運(yùn)算方法計(jì)算比較復(fù)雜,但如果采用下面的方法把乘法轉(zhuǎn)化為減法后計(jì)算就變得非常簡(jiǎn)單.

分析方法:

因?yàn)?/span>,,,

所以,將以上4個(gè)等式兩邊分別相加即可得到結(jié)果,解法如下:

1=

2)應(yīng)用上面的方法計(jì)算:

3)類比應(yīng)用上面的方法探究并計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)開始時(shí)所對(duì)應(yīng)的數(shù)分別是6.兩點(diǎn)各自以一定的速度在數(shù)軸上運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為2個(gè)單位長(zhǎng)度.

1)若點(diǎn)兩點(diǎn)初始時(shí)線段的中點(diǎn),則點(diǎn)所表示的數(shù)是_____;

2兩點(diǎn)同時(shí)出發(fā)相向而行,在原點(diǎn)處相遇,求點(diǎn)的運(yùn)動(dòng)速度;

3)若兩點(diǎn)按(2)中的速度同時(shí)出發(fā),向數(shù)軸正方向運(yùn)動(dòng),幾秒時(shí)兩點(diǎn)相距6個(gè)單位長(zhǎng)度?

查看答案和解析>>

同步練習(xí)冊(cè)答案