【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=2BC,點(diǎn)D在邊AC上,連接BD,過A作BD的垂線交BD的延長(zhǎng)線于點(diǎn)E.
(1)若M,N分別為線段AB,EC的中點(diǎn),如圖1,求證:MN⊥EC;
(2)如圖2,過點(diǎn)C作CF⊥EC交BD于點(diǎn)F,求證:AE=2BF;
(3)如圖3,以AE為一邊作一個(gè)角等于∠BAC,這個(gè)角的另一邊與BE的延長(zhǎng)線交于P點(diǎn),O為BP的中點(diǎn),連接OC,求證:OC=(BE﹣PE).
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.
【解析】
(1)連接EM、CM,直角三角形斜邊上的中線等于斜邊的一半得EM=CM;再由等腰三角形三線合一的性質(zhì)得出結(jié)論;
(2)證明△AEC∽△BFC,得由AC=2BC得AE=2BF;
(3)證明△ACB∽△AEP,得從而知道AE=2PE,由AE=2BF得PE=BF;根據(jù)直角三角形斜邊中線等于斜邊一半得OC=EF,代入得結(jié)論.
證明:(1)如圖1,連接EM、CM,
∵AE⊥BE,M是AB的中點(diǎn),
∴EM=AB,CM=AB,
∴EM=CM,
∵N是EC的中點(diǎn),
∴MN⊥EC;
(2)如圖2,∵∠ECF=90°,∠ACB=90°,
∴∠ECA+∠ACF=90°,∠ACF+∠FCB=90°,
∴∠ECA=∠FCB,
∵∠CFB=∠ECF+∠CEF=90°+∠CEF,
∠AEC=∠AEB+∠CEF=90°+∠CEF,
∴∠CFB=∠AEC,
∴△AEC∽△BFC,
∴
∵AC=2BC,
∴AE=2BF;
(3)如圖3,過點(diǎn)C作CF⊥EC交BD于點(diǎn)F,
∵∠AEP=∠ACB=90°,∠BAC=∠PAE,
∴△ACB∽△AEP,
∴
∵AC=2BC,
∴AE=2PE,
∵AE=2BF,
∴PE=BF,
∵O為BP的中點(diǎn),
∴PO=BO,
∴EO=FO,
∴CO=EF=(BE﹣BF)=(BE﹣PE).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價(jià)提供產(chǎn)品給大學(xué)生銷售,則政府給該企業(yè)補(bǔ)償補(bǔ)償額批發(fā)價(jià)生產(chǎn)成本價(jià)銷售量大學(xué)生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調(diào)查發(fā)現(xiàn),每月銷售量件與銷售單價(jià)元之間的關(guān)系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價(jià)為每件12元,設(shè)它的生產(chǎn)成本價(jià)為每件m元
(1)當(dāng)時(shí).
①若第一個(gè)月的銷售單價(jià)定為20元,則第一個(gè)月政府要給該企業(yè)補(bǔ)償多少元?
②設(shè)所獲得的利潤(rùn)為元,當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(2)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得超過30元今年三月小明獲得贏利,此時(shí)政府給該企業(yè)補(bǔ)償了920元,若m,x都是正整數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點(diǎn).
(1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′( , );
(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說明理由;
(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=(x>0)的圖象于A(4,-8)、B(m,-2)兩點(diǎn),交x軸于點(diǎn)C.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)根據(jù)圖象回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
(3)以O、A、B、P為頂點(diǎn)作平行四邊形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過正方形網(wǎng)格中的格點(diǎn)、、、,請(qǐng)你僅用網(wǎng)格中的格點(diǎn)及無刻度的直尺分別在圖1、圖2、圖3中畫出一個(gè)滿足下列兩個(gè)條件的:
(1)頂點(diǎn)在上且不與點(diǎn)、、、重合;
(2)在圖1、圖2、圖3中的正切值分別為1、、2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中放有四張分別寫有數(shù)字1、2、3、4的紅色卡片和三張分別寫有數(shù)字1、2、3的藍(lán)色卡片,卡片除顏色和數(shù)字外其它完全相同。
(1)從中任意抽取一張卡片,則該卡片上寫有數(shù)字1的概率是;
(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率。(請(qǐng)利用樹狀圖或列表法說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點(diǎn)E在AD上,DE=BD,M、N分別是AB、CE的中點(diǎn).
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0),函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x | …… | ﹣1 | 0 | 1 | 4 | …… |
y | …… | 12 | 6 | 2 | 2 | …… |
(1)求二次函數(shù)的解析式;
(2)直接寫出不等式ax2+bx+c﹣2>0的解集是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com