【題目】如圖①,在中,點(diǎn)分別在上,且.設(shè)的邊上的高為,的邊上的高為.
(1)若、的面積分別為3,1,則 ;
(2)設(shè)、、四邊形的面積分別為,求證:;
(3)如圖②,在中,點(diǎn)分別在上,點(diǎn)在上,且, . 若、、的面積分別為3, 7, 5,求的面積.
【答案】(1) ;(2)見解析;(3)27
【解析】
(1)根據(jù)可證∽,根據(jù)相似三角形的性質(zhì)即可得解;
(2)設(shè)AD=a,BD=b,根據(jù)相似三角形的性質(zhì)利用a、b分別把、表示出來(lái),進(jìn)而可表示出,然后計(jì)算出的結(jié)果,即可得證;
(3)將△BDF和△CEG拼接成新△BDH,易得△BDH∽△DAE∽△BAC,且S△BDH=12,利用相似三角形的性質(zhì)可得AD:BD=1:2,進(jìn)而可得AD:AB=1:3,再利用相似三角形的面積比等于相似比的平方即可得解.
(1)解:∵,
∴∠AFD=∠C,∠A=∠EFC,
∴∽,
∴,
∵、的面積分別為3,1,
∴,
∴,
故答案為:;
(2)證明:設(shè)AD=a,BD=b,
∵,
∴∽,∽,
∴,,
∴,,
∴
∴;
(3)∵,
∴四邊形DFGE為平行四邊形,
∴DF=EG,
∴可將△BDF和△CEG拼接成新△BDH,
則△BDH∽△DAE∽△BAC,且S△BDH=S△BDF+S△EGC=7+5=12,
∵△BDH∽△DAE,
∴,
∴,
∴,
∵△DAE∽△BAC,
∴,
∴,
∴ΔABC的面積為27.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為A(s,t)(其中s≠0).
(1)若拋物線經(jīng)過(guò)(2,7)和(-3,37)兩點(diǎn),且s=1.
①求拋物線的解析式;
②若n>1,設(shè)點(diǎn)M(n,y1),N(n+1,y2)在拋物線上,比較y1,y2的大小關(guān)系,并說(shuō)明理由;
(2)若a=2,c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;
(3)若點(diǎn)A在拋物線y=上,且2≤s<3時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中放有三張卡片,每張卡片上寫有1個(gè)實(shí)數(shù),分別為1,2,3.(卡片除了實(shí)數(shù)不同外,其余均相同)
(1)從盒子中隨機(jī)抽取一張卡片,請(qǐng)直接寫出卡片上的實(shí)數(shù)是2的概率_______;
(2)先從盒子中隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的橫坐標(biāo),卡片不放回,再隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的縱坐標(biāo),兩次抽取的卡片上的實(shí)數(shù)分別作為點(diǎn)P的橫縱坐標(biāo).請(qǐng)你用列表法或樹狀圖法,求出點(diǎn)P在反比例函數(shù)上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)請(qǐng)直接寫出點(diǎn)A坐標(biāo)______,點(diǎn)B坐標(biāo)________;
(2)點(diǎn)C是直線AB上一個(gè)動(dòng)點(diǎn),當(dāng)△AOC的面積是△BOC的面積的2倍時(shí),求點(diǎn)C的坐標(biāo);
(3)點(diǎn)D為直線AB上的一個(gè)動(dòng)點(diǎn),在平面內(nèi)找另一個(gè)點(diǎn)E,且以O、B、D、E為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出滿足條件的菱形的周長(zhǎng)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中,裝有2個(gè)白球,1個(gè)紅球,1個(gè)黃球,這些球除顏色外都相同.
求下列事件的概率:
(1)攪勻后從中任意摸出1個(gè)球,恰好是白球;
(2)攪勻后從中任意摸出2個(gè)球,2個(gè)都是白球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解學(xué)生對(duì)新聞、體育、娛樂、動(dòng)畫四類電視節(jié)目的喜愛情況,進(jìn)行了統(tǒng)計(jì)調(diào)查隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目每名學(xué)生必選且只能選擇四類節(jié)目中的一類并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計(jì)圖根據(jù)兩圖提供的信息,回答下列問(wèn)題:
最喜歡娛樂類節(jié)目的有______人,圖中______;
請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
根據(jù)抽樣調(diào)查結(jié)果,若該校有1800名學(xué)生,請(qǐng)你估計(jì)該校有多少名學(xué)生最喜歡娛樂類節(jié)目;
在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識(shí)競(jìng)賽,請(qǐng)用列表法或樹狀圖求同時(shí)選中甲、乙兩同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊長(zhǎng)方形紙片ABCD,先折出折痕(對(duì)角線)BD,再折疊使AD邊與BD重合,得折痕DG,若AB=8,BC=6,則AG的長(zhǎng)為____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,AB=4,對(duì)稱軸是直線x=﹣1.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)連接AC,E是線段OC上一點(diǎn),點(diǎn)E關(guān)于直線x=﹣1的對(duì)稱點(diǎn)F正好落在AC上,求點(diǎn)F的坐標(biāo);
(3)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A即停止運(yùn)動(dòng),過(guò)點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,交線段AC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請(qǐng)直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com