精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動點P、Q同時從點A出發(fā),其中P4cm/s的速度,沿ABC的路線向點C運動;Q先以2cm/s的速度沿AO的路線向點O運動,然后再以2cm/s的速度沿OD的路線向點D運動,當P、Q到達終點時,整個運動隨之結束,設運動時間為t秒.

1)在點PAB上運動時,判斷PQ與對角線AC的位置關系,并說明理由;

2)若點Q關于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N

①直接寫出當PQM是直角三角形時t的取值范圍;

②是否存在這樣的t,使PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

【答案】1PQAC,理由見解析;(2)①0t5t7.5;②存在,t2

【解析】

1)利用相似三角形的性質解決問題即可.

2)①分兩種情形分別求解即可.

②假設存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形,但是需分點NAD上時和點NCD上時兩種情況分別討論.

1)由題意AP4tAQ2t

,

又∵AO10AB20,

,

又∵∠CAB30°,

∴△APQ∽△ABO

∴∠AQP=∠AOB90°,即PQAC

2)①由(1)可知,當0t5時,如圖1中,∠PQM90°,△PQM是直角三角形,

5t10時,如圖2中,當BPPC時,∠PMQ90°,此時t7.5,

綜上所述,當0t5t7.5時,△PQM是直角三角形

②存在這樣的t,使△PMN是以PN為一直角邊的直角三角形.

lACH

如圖1,當點NAD上時,若PNMN,則∠NMH30°

MH2NH.得204tt,解得t2

如圖3,當點NCD上時,若PMPN,則PMCD,

∴∠BPM=∠BCD60°,∠BMP=∠BDC60°,

∵∠PBM60°,

∴△PBM是等邊三角形,

PBBM,

4t20 [202×2t5],

解得t

故當t2時,存在以PN為一直角邊的直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某區(qū)域平面示意圖如圖,點O在河的一側,AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數據:sin73.7°≈,cos73.7°≈,tan73.7°≈

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將矩形ABCD按如圖所示的方式折疊,BE,EG,FG為折痕,若頂點A,C,D都落在點O處,且點B,O,G在同一條直線上,同時點E,OF在另一條直線上,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,扇形中,,的中點,于點,以為半徑的于點,則圖中陰影部分的面積是___

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形中,,,點是射線上一點,點是射線上一點,且滿足.

1)如圖,當點在線段上時,若,在線段上截取,聯結.求證:;

2)如圖,當點在線段的延長線上時,若,,設,,求關于的函數關系式及其定義域;

3)記交于點,在(2)的條件下,若相似,求線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數與反比例函數的圖象相交于兩點,過點軸于點,,點的坐標為

1)求一次函數和反比例函數的表達式;

2)求的面積;

3軸上一點,且是等腰三角形,請直接寫出所有符合條件的點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,該拋物線是由yx2平移后得到,它的頂點坐標為(﹣,﹣),并與坐標軸分別交于A,BC三點.

1)求A,B的坐標.

2)如圖2,連接BCAC,在第三象限的拋物線上有一點P,使∠PCA=∠BCO,求點P的坐標.

3)如圖3,直線yax+bb0)與該拋物線分別交于P,G兩點,連接BP,BG分別交y軸于點D,E.若ODOE3,請?zhí)剿?/span>ab的數量關系.并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于任意一個四位數,我們可以記為,即.若規(guī)定: 對四位正整數進行 F運算,得到整數.例如,;

1)計算:;

2)當時,證明:的結果一定是4的倍數;

3)求出滿足的所有四位數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1)所示,E是矩形ABCD的邊AD上一邊,動點P,Q同時從點B出發(fā),點P沿折線運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒,設PQ同時出發(fā)t秒后時,的面積為,已知的函數關系圖像如圖(2)(曲線OM為拋物線的一部分),則當t的值是___________時,面積為4

查看答案和解析>>

同步練習冊答案