【題目】如圖,直線AB//CD,直線EF交AB于點(diǎn)E,交CD于點(diǎn)F,EP平分∠AEF,FP平分∠CFE,∠BEP=α,∠DFP=β,則a+β=( )
A.180°B.225°C.270°D.315°
【答案】C
【解析】
根據(jù)平行線的性質(zhì),由AB∥CD得到∠AEF+∠CFE=180°,再根據(jù)角平分線定義得∠PEF+∠PFE=(∠AEF+∠CFE),然后計(jì)算出∠EPF=90°,再由∠BEP+∠EPF+∠PFD=360°,即可求出a+β的值.
解:∵AB∥CD,
∴∠AEF+∠CFE=180°,
又∵EP平分∠AEF,FP平分∠EFC
∴∠PEF+∠PFE=(∠AEF+∠CFE)=×180°=90°
∴∠EPF=90°
又∠BEF+∠EFD=180°,且△PEF內(nèi)角和為360°
∴∠BEP+∠EPF+∠PFD=360°
∴∠BEP+∠PFD=α+β=360°-∠EPF=360°-90°=270°.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,點(diǎn)P是平行四邊形ABCD外一點(diǎn),PE∥AB交BC于點(diǎn)E.PA、PD分別交BC于點(diǎn)M、N,點(diǎn)M是BE的中點(diǎn).
(1)求證:CN=EN;
(2)若平行四邊形ABCD的面積為12,求△PMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校初二和初三兩個(gè)年級(jí)各有600名同學(xué),為了科普衛(wèi)生防疫知識(shí),學(xué)校組織了一次在線知識(shí)競(jìng)賽,小宇分別從初二、初三兩個(gè)年級(jí)隨機(jī)抽取了40名同學(xué)的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.
.初二、初三年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:,,,,):
.初二年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)?cè)?/span>這一組的數(shù)據(jù)如下:
80 80 81 83 83 84 84 85 86 87 88 89 89
.初二、初三學(xué)生知識(shí)競(jìng)賽成績(jī)的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
初二年級(jí) | 80.8 | 96.9 | |
初三年級(jí) | 80.6 | 86 | 153.3 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)補(bǔ)全上面的知識(shí)競(jìng)賽成績(jī)頻數(shù)分布直方圖;
(2)寫(xiě)出表中的值;
(3)同學(xué)看到上述的信息后,說(shuō)自己的成績(jī)能在本年級(jí)排在前40%,同學(xué)看到同學(xué)的成績(jī)后說(shuō):“很遺憾,你的成績(jī)?cè)谖覀兡昙?jí)進(jìn)不了前50%”.請(qǐng)判斷同學(xué)是________(填“初二”或“初三”)年級(jí)的學(xué)生,你判斷的理由是________.
(4)若成績(jī)?cè)?/span>85分及以上為優(yōu)秀,請(qǐng)估計(jì)初二年級(jí)競(jìng)賽成績(jī)優(yōu)秀的人數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九(5)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如下的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)九(5)班的學(xué)生人數(shù)為_________,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中n=__________,m=___________;
(3)排球興趣小組4名學(xué)生中有2男2女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是.圖1中,點(diǎn)為正方形的對(duì)稱中心,頂點(diǎn)分別在軸和軸的正半軸上,則___ 圖2中,點(diǎn)為正的重心,頂點(diǎn)分別在軸和軸的正半軸上,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,點(diǎn)O在BD上,以O為圓心的圓恰好經(jīng)過(guò)A、B、C三點(diǎn),⊙O交BD于E,交AD于F,且,連接OA、OF.
(1)求證:四邊形ABCD是菱形;
(2)若∠AOF=3∠FOE,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形中,,以為直徑的分別交、于點(diǎn)、,過(guò)點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)若的半徑為5,,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為,且其三個(gè)頂點(diǎn)均在拋物線上.
(1)求拋物線的解析式;
(2)若過(guò)原點(diǎn)的直線與直線分別交拋物線于點(diǎn)、,
①當(dāng)時(shí),試求的面積;
②試證明:不論實(shí)數(shù)取何值,直線總是經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com