【題目】已知,,交邊(點(diǎn)不與、重合).分別平分,,若,則的值為(

A.B.C.D.

【答案】B

【解析】

根據(jù)角平分線的定義求出∠BOC=90°+BPC,根據(jù)三角形外角的性質(zhì),及P點(diǎn)在AB邊上且不與A、B重合,確定∠ACP的大小,即可求解.

BO分別平分∠ABC、∠PCB

∴∠OBC=ABC,∠OCB=PCB

∴∠BOC=180°-OBC-OCB=180°-(∠ABC+PCB=180°-180°-BPC=90°+BPC=90°+(∠A+ACP=110°+ACP

∵∠A=40°,∠CBA=60°

∴∠ACB=80°

P點(diǎn)在AB邊上且不與A、B重合

<∠ACP80°

110°<∠BOC150°

m=110,n=150

n-m=40

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知,,,斜邊,垂直平分線,且,連接,.

1)直接寫出__________,__________;

2)求證:是等邊三角形;

3)如圖,連接,作,垂足為點(diǎn),直接寫出的長(zhǎng);

4是直線上的一點(diǎn),且,連接,直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,△ABC的周長(zhǎng)為38cm,∠BAC=140°AB+AC=22cm,AB、AC的垂直平分線分別交BCEF,與AB、AC分別交于點(diǎn)DG.

(1)求∠EAF的度數(shù).

(2)求△AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖2211拋物線yax2+2axc(a>0)y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;

(3)拋物線線上是否存在一點(diǎn)P,使,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機(jī)的一個(gè)機(jī)翼,請(qǐng)你根據(jù)圖中的數(shù)據(jù)幫小明計(jì)算出CD的長(zhǎng)度.(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,以為直徑作分別交,于點(diǎn),,連接,過點(diǎn),垂足為,交于點(diǎn)

(1)求證:;

(2)若,求線段的長(zhǎng);

(3)在的條件下,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-1,0),B4,0C0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m0),過點(diǎn)Px軸的垂線交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)已知點(diǎn)F0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn),,三點(diǎn).

求此拋物線的解析式;

若點(diǎn)是線段上的點(diǎn)(不與,重合),過軸交拋物線于,設(shè)點(diǎn)的橫坐標(biāo)為,請(qǐng)用含的代數(shù)式表示的長(zhǎng);

的條件下,連接,,是否存在點(diǎn),使的面積最大?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案