【題目】某車站在春運(yùn)期間為改進(jìn)服務(wù),抽查了100名旅客從開始在窗口排隊(duì)到購到車票所用時間t(以下簡稱購票用時,單位:分),得到如下表所示的頻數(shù)分布表.
分組 | 頻數(shù) | |
一組 | 0≤t<5 | 0 |
二組 | 5≤t<10 | 10 |
三組 | 10≤t<15 | 10 |
四組 | 15≤t<20 | |
五組 | 20≤t<25 | 30 |
合計(jì) | 100 |
(1)在表中填寫缺失的數(shù)據(jù);
(2)畫出頻數(shù)分布直方圖;
(3)旅客購票用時的平均數(shù)可能落在哪一小組內(nèi)?
(4)若每增加一個購票窗口可以使平均購票用時降低5分,要使平均購票用時不超過10分,那么請你決策一下至少要增加幾個窗口?
【答案】(1)50;(2)詳見解析;(3)15≤t<20;(4)至少要增加兩個窗口
【解析】
(1)用總?cè)藬?shù)減去各組人數(shù)即可求解;
(2)根據(jù)相關(guān)數(shù)據(jù)作圖即可;
(3)根據(jù)題意求出平均數(shù)即可判斷;
(4)設(shè)需要增加x個窗口,根據(jù)題意列出不等式即可求解.
解:(1)第四組的頻數(shù)為100-10-10-30=50.
(2)頻數(shù)分布直方圖如圖5所示.
圖5
(3)平均數(shù)為=17.5
∴在15≤t<20小組.
(4)設(shè)需要增加x個窗口,則可得20-5x≤10,即x≥2,
所以至少要增加兩個窗口.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O與AC相交于點(diǎn)D,∠BAC=45°,AB=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D為AC上一點(diǎn),DE⊥AB于點(diǎn)E,AC=12,BC=5.
(1)求的值;
(2)當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家預(yù)測一種襯衫能暢銷市場,就用12000元購進(jìn)了一批這種襯衫,上市后果然供不應(yīng)求,商家又用了26400元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但每件進(jìn)價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫都按每件150元的價格銷售,則兩批襯衫全部售完后的利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是()
A.AB=BC,CD=DAB.AB//CD,AD=BC
C.AB//CD,∠A=∠CD.∠A=∠B,∠C=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時針方向旋轉(zhuǎn)90°,得到△A1B2C2,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2.
(3)連結(jié),請判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD,E為邊AB上的點(diǎn),將△BCE沿CE折疊,點(diǎn)B恰好落在AC上點(diǎn)B′處.
(1)若AB=8,BC=6,求BE的長度;
(2)如圖2,過點(diǎn)D作EC的垂線,垂足為點(diǎn)G,分別交BC、AC于點(diǎn)F、H,連結(jié)EF,若EF=AE,求證:為定值;
(3)若四邊形EFCH是菱形,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(diǎn)(0,0),點(diǎn)A在該圖象上,OA交其對稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對稱,連接AN、ON.
(1)求該二次函數(shù)的關(guān)系式;
(2)若點(diǎn)A的坐標(biāo)是(6,-3),求△ANO的面積;
(3)當(dāng)點(diǎn)A在對稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點(diǎn)A的坐標(biāo);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和”揭示了三角形的一個外角與它的兩個內(nèi)角之間的數(shù)量關(guān)系,請?zhí)剿鞑懗鋈切螞]有公共頂點(diǎn)的兩個外角與它的第三個內(nèi)角之間的關(guān)系:_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com