【題目】如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正確的是____________________________
【答案】①②④
【解析】
由SAS證明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正確;
由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正確;
作OG⊥MC于G,OH⊥MB于H,如圖2所示:則∠OGC=∠OHD=90°,由AAS證明△OCG≌△ODH(AAS),得出OG=OH,由角平分線的判定方法得出MO平分∠BMC,④正確;
由∠AOB=∠COD,得出當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,假設(shè)∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③錯(cuò)誤;即可得出結(jié)論.
解:∵∠AOB=∠COD=40°,
∴∠AOB+∠AOD=∠COD+∠AOD,
即∠AOC=∠BOD,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS),
∴∠OCA=∠ODB,AC=BD,①正確;
∴∠OAC=∠OBD,
由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,
∴∠AMB=∠AOB=40°,②正確;
作OG⊥MC于G,OH⊥MB于H,如圖2所示:
則∠OGC=∠OHD=90°,
在△OCG和△ODH中,
∴△OCG≌△ODH(AAS),
∴OG=OH,
∴MO平分∠BMC,④正確;
∵∠AOB=∠COD,
∴當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,
假設(shè)∠DOM=∠AOM
∵△AOC≌△BOD,
∴∠COM=∠BOM,
∵MO平分∠BMC,
∴∠CMO=∠BMO,
在△COM和△BOM中,
∴△COM≌△BOM(ASA),
∴OB=OC,
∵OA=OB
∴OA=OC
與OA>OC矛盾,
∴③錯(cuò)誤;
正確的是①②④;
故答案為:①②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( 。
A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD對角線AC上一動點(diǎn),點(diǎn)E在射線BC上,且PB=PE,連接PD,O為AC中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段AO上時(shí),試猜想PE與PD的數(shù)量關(guān)系和位置關(guān)系,不用說明理由;
(2)如圖2,當(dāng)點(diǎn)P在線段OC上時(shí),(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當(dāng)點(diǎn)P在AC的延長線上時(shí),請你在圖3中畫出相應(yīng)的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動點(diǎn) E 從 A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動,點(diǎn) D 為射線 BM 上一動點(diǎn), 隨著 E 點(diǎn)運(yùn)動而運(yùn)動,且始終保持 ED=CB,當(dāng)點(diǎn) E 經(jīng)過______秒時(shí),△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F=30°,讓△ABC在直角三角板的邊EF上向右平移(點(diǎn)C與點(diǎn)F重合時(shí)停止).
(1)如圖1,當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),點(diǎn)A恰好落在直角三角板的斜邊DF上,證明:EF=2BC.
(2)在△ABC平移過程中,AB,AC分別與三角板斜邊的交點(diǎn)為G、H,如圖2,線段EB=AH是否始終成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年圣誕節(jié)前夕,小明、小麗兩位同學(xué)到某超市調(diào)研一種襪子的銷售情況,
這種襪子的進(jìn)價(jià)為每雙 1 元,請根據(jù)小麗提供的信息解決小明提出的問題.
小麗:每雙定價(jià) 2 元,每天能賣出 500 雙,而且這種襪子的售價(jià)每上漲 0.1 元,其每天的銷售量將減少 10 雙.
小明:照你所說,如果要實(shí)現(xiàn)每天 800 元的銷售利潤,那該如何定價(jià)?別忘了,物價(jià)局有規(guī)定,售價(jià)不能超過進(jìn)價(jià)的 300%呦.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,則CE2+CF2 的值為( )
A.36B.9C.6D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(2,4),B(4,1),C(-3,4)
(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).
(2)直接寫出線段AB平移至線段CD處所掃過的面積.
(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在如圖所示的網(wǎng)格中建立平面直角坐標(biāo)系后,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(2,4).
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)借助圖中的網(wǎng)格,請只用直尺(不含刻度)完成以下要求:
①在圖中找一點(diǎn)P,使得P到AB、AC的距離相等,且PA=PB;
②在x軸上找一點(diǎn)Q,使得△QAB的周長最小,并求出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com