【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+k的圖象與反比例函數(shù)y=-的圖象交于點(diǎn)A(-4,n)和點(diǎn)B.
(1)求k的值和點(diǎn)B的坐標(biāo);
(2)若P是x軸上一點(diǎn),且AP=AB,直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】(1)點(diǎn)B的坐標(biāo)是(1,-4).(2)點(diǎn)P的是坐標(biāo)(3,0)或(-11,0).
【解析】
(1)將點(diǎn)A的坐標(biāo)帶入反比例函數(shù)解析式中,求出n值,再將A點(diǎn)的坐標(biāo)帶入一次函數(shù)解析式中即可求出k值,聯(lián)立一次函數(shù)解析式與反比例函數(shù)解析式成方程組,解方程組即可得出結(jié)論;
(2)設(shè)出點(diǎn)P的坐標(biāo)為(m,0).根據(jù)兩點(diǎn)間的距離公式表示出線(xiàn)段AP和AB的長(zhǎng)度,根據(jù)AP=AB得出關(guān)于m的一元二次方程,解方程即可得出結(jié)論.
解:(1)把A(-4,n)代入中,
得:n=-=1,
把A(-4,1)代入y=-x+k中,
得:1=-(-4)+k,解得:k=-3.
解方程組,得或.
∴點(diǎn)B的坐標(biāo)是(1,-4).
(2)設(shè)點(diǎn)P的坐標(biāo)為(m,0).
則:AB==5,AP=.
∵AP=AB,
∴5=,即m2+8m-33=0,
解得:m1=-11,m2=3.
答:點(diǎn)P的是坐標(biāo)(3,0)或(-11,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個(gè)根,則這四個(gè)根的和為﹣4.其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AB=6,連接AC,BD,P是正方形邊上或?qū)蔷(xiàn)上一點(diǎn),若PD=2AP,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(4,2),C(2,0).
(1)將△ABC沿y軸翻折得到△A1B1C1,畫(huà)出△A1B1C1;
(2)將△ABC繞著點(diǎn)(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫(huà)出△A2B2C2;
(3)線(xiàn)段B2C2可以看成是線(xiàn)段B1C1繞著平面直角坐標(biāo)系中某一點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年12月2日1時(shí)30分,中國(guó)于西昌衛(wèi)星發(fā)射中心成功將“嫦娥三號(hào)”探測(cè)器送入軌道.2013年12月15日4時(shí)35分,“嫦娥三號(hào)”探測(cè)器與“玉兔號(hào)”月球車(chē)分離,“玉兔號(hào)”月球車(chē)順利駛抵月球表面,留下了中國(guó)在月球上的第一個(gè)足跡.“玉兔號(hào)”月球車(chē)一共在月球上工作了972天,約23000小時(shí).將23000用科學(xué)記數(shù)法表示為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D為BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)為點(diǎn)E,連接AD、DE,在AD上取點(diǎn)F,使得∠EFD=60°,射線(xiàn)EF與AC交于點(diǎn)G.
(1)設(shè)∠BAD=α,求∠AGE的度數(shù)(用含α的代數(shù)式表示);
(2)用等式表示線(xiàn)段CG與BD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)
進(jìn)行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)統(tǒng)計(jì)如下:
根據(jù)上面提供的信息,回答下列問(wèn)題:
(1)在統(tǒng)計(jì)表中,a的值為 ▲ ,b的值為 ▲ ,并將統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(2)甲同學(xué)說(shuō):“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù). ”請(qǐng)問(wèn):甲同學(xué)的體育成績(jī)應(yīng)在什么分?jǐn)?shù)段內(nèi)? ▲ (填相應(yīng)分?jǐn)?shù)段的字母)
(3)如果把成績(jī)?cè)?/span>40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)A(4,0)和點(diǎn)D(﹣1,0),與y軸交于點(diǎn)C,過(guò)點(diǎn)C作BC平行于x軸交拋物線(xiàn)于點(diǎn)B,連接AC
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過(guò)點(diǎn)N作NQ垂直于BC交AC于點(diǎn)Q,連結(jié)MQ.
①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)試銷(xiāo)一種成本為50元/件的恤.經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元/件)符合一次函數(shù)關(guān)系,試銷(xiāo)數(shù)據(jù)如下表:
售價(jià)(元/件) | …… | 55 | 60 | 70 | …… |
銷(xiāo)量(件) | …… | 75 | 70 | 60 | …… |
(1)求一次函數(shù)的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com