精英家教網 > 初中數學 > 題目詳情

【題目】以下是一位同學所做的實數運算解題過程的一部分. ﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ +1﹣1+4×
(1)指出上面解答過程中的錯誤,并寫出正確的解答過程;
(2)若分式方程 +1= 的解與(1)中的最終結果相同,求a的值.

【答案】
(1)解:錯誤: ,cos60°≠ ,|﹣1|2017≠﹣1,

﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°

=﹣ ﹣1﹣1+4×

=﹣


(2)解:將x=﹣ 代入 +1= ,可得:

,

解得a=﹣1.


【解析】(1)根據有理數的乘方的運算方法,以及特殊角的三角函數值,指出上面解答過程中的錯誤,并寫出正確的解答過程即可.(2)把(1)中的最終結果代入分式方程 +1= ,求出a的值是多少即可.
【考點精析】掌握零指數冪法則和分式方程的解是解答本題的根本,需要知道零次冪和負整數指數冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數);分式方程無解(轉化成整式方程來解,產生了增根;轉化的整式方程無解);解的正負情況:先化為整式方程,求整式方程的解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列說法正確的有( ) ① ﹣2的值在3和4之間;
②當a=1時,關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數根;
③命題“對頂角相等”的逆命題是真命題;
④十邊形的內角和為1440°;
⑤等邊三角形既是軸對稱圖形又是中心對稱圖形.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.

(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)(π﹣2017)0+|2﹣ |﹣4cos30°+
(2)先化簡,再求值: ÷ ,其中a=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為:
②BC,CD,CF之間的數量關系為:;(將結論直接寫在橫線上)

(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2 ,CD= BC,請求出GE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資成本x成正比例關系,種植花卉的利潤y2與投資成本x的平方成正比例關系,并得到了表格中的數據;

投資量x(萬元)

2

種植樹木的利潤y1(萬元)

4

種植花卉的利潤y2(萬元)

2


(1)分別求出利潤y1與y2關于投資量x的函數關系式;
(2)如果這位專業(yè)戶計劃以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額萬元,種植花卉和樹木共獲利潤W萬元,求出W與m之間的函數關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬元,在(2)的條件下,求出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:(π﹣5)0+cos45°﹣|﹣ |+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】點A,B的坐標分別為(﹣2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(C在D的左側),給出下列結論:①c<3;②當x<﹣3時,y隨x的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為﹣5;④當四邊形ACDB為平行四邊形時, .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某中學藝術節(jié)期間,向學校學生征集書畫作品.九年級美術李老師從全年級14個班中隨機抽取了A、B、C、D 4個班,對征集到的作品的數量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
(1)李老師采取的調查方式是(填“普查”或“抽樣調查”),李老師所調查的4個班征集到作品共件,其中B班征集到作品 , 請把圖2補充完整.
(2)如果全年級參展作品中有4件獲得一等獎,其中有2名作者是男生,2名作者是女生.現在要抽兩人去參加學?偨Y表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程)

查看答案和解析>>

同步練習冊答案