13.如圖,在?ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線上,AG與邊CD交于點(diǎn)E,與對(duì)角線BD交于點(diǎn)F,求證:AF2=EF•FG.

分析 由平行四邊形的性質(zhì)得到AD∥BC,AB∥CD,得兩組比例線段$\frac{AF}{FG}$=$\frac{DF}{BF}$,$\frac{EF}{AF}=\frac{DF}{BF}$,等量代換即可得到結(jié)論.

解答 證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴△ADF∽△BGF,△ABF∽△DEF,
∴$\frac{AF}{FG}$=$\frac{DF}{BF}$,$\frac{EF}{AF}=\frac{DF}{BF}$,
∴$\frac{AF}{FG}$=$\frac{EF}{AF}$,
∴AF2=EF•FG.

點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì),是基礎(chǔ)知識(shí)要熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,∠C=90°,E是BC上一點(diǎn),ED⊥AB,垂足為D.求證:△ABC∽△EBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在矩形ABCD中,點(diǎn)E在CD邊上,將矩形ABCD沿直線AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處.
(1)求證:△ABF∽△FCE;
(2)若AB=3,BC=5,求CE的長(zhǎng);
(3)當(dāng)$\frac{AB}{BC}$為何值時(shí),△FCE∽△AFE?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:
(1)($\frac{1}{a}$+$\frac{1}$)÷$\frac{{a}^{2}+2ab+^{2}}{ab}$
(2)($\sqrt{5}$+$\sqrt{3}$)($\sqrt{5}$-$\sqrt{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.先化簡(jiǎn),再求值
3x3-[x3+(6x2-7x)]-2(x3-3x2-4x),其中x=-$\frac{2}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知O為直線AB上一點(diǎn),過(guò)點(diǎn)O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠BOE=3∠DOE,∠COE=70°.
求:(1)∠BOE的度數(shù);(2)∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.分解因式:
(1)2x2-8;
(2)-3ax2+6axy-3ay2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E,F(xiàn)分別是AC,BC邊上一點(diǎn).
(1)求證:$\frac{AC}{BC}$=$\frac{CD}{BD}$;
(2)若CE=$\frac{1}{3}$AC,BF=$\frac{1}{3}$BC,求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四邊形ABCD中,∠A=∠B=90°,AB=25,AD=15,BC=10,點(diǎn)E是AB上一點(diǎn),且DE=CE,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案