【題目】為了倡導“節(jié)約用水,從我做起”,市政府決定對市直機關500戶家庭的用水情況作一次調(diào)查,市政府調(diào)查小組隨機抽查了其中100戶家庭一年的月平均用水量(單位:噸).并將調(diào)查結果繪制成了如圖所示的條形統(tǒng)計圖,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.40,20
B.11,11
C.11,12
D.11,11.5
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .
其中正確的結論有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=﹣x+b分別與x軸、y軸交于點A、點B,與直線l2:y2=x交于點C(2,2).
(1)若y1<y2,請直接寫出x的取值范圍;
(2)點P在直線l1:y1=﹣x+b上,且△OPC的面積為3,求點P的坐標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個條件,這個條件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩同學用一副撲克牌中牌面數(shù)字分別是3,4,5,6的4張牌做抽數(shù)字游戲,游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數(shù)作為十位上的數(shù)字,抽出的牌不放回,然后將剩下的牌洗勻,再從中隨機抽取一張,抽得的數(shù)作為個位上的數(shù)字,這樣就得到一個兩位數(shù),若這個兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認為這個游戲公平嗎?請利用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料并完成任務.
萊昂哈德·歐拉是18世紀數(shù)學界最杰出的人物之一,瑞士著名的數(shù)學家、物理學家,他不但為數(shù)學界作出貢獻,更把整個數(shù)學推至物理的領域;同時,也是數(shù)學史上研究成果最多的數(shù)學家,平均每年寫出八百多頁的論文,還寫了大量的力學、分析學、幾何學等的課本,《無窮小分析引論》《微分學原理》《積分學原理》等都成為數(shù)學界中的經(jīng)典著作.因此,被稱為歷史上最偉大的兩位數(shù)學家之一(另一位是卡爾·弗里德里克·高斯).在數(shù)學成就上,歐拉最先把關于的多項式用記號的形式來表示(可用其他字母代替,但不同的字母表示不同的多項式),例如,當時,多項式的值用來表示,即;當時,多項式的值用來表示,記為.
任務:
已知;.
請你根據(jù)材料中代入求值的方法解決下列問題:
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖1,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.將一張如圖1所示的“完美箏形”紙片ABCD先折疊成如圖2所示形狀,再展開得到圖3,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應點,點D′為點D的對應點,連接EB′,FD′相交于點O.
簡單應用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是 ;
(2)當圖3中的∠BCD=120°時,∠AEB′= ;
拓展提升:
(3)當圖2中的四邊形AECF為菱形時,對應圖3中的四邊形CD′OB′是否是“完美箏形”?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且∠B=60°,過C作⊙O的切線l,與直徑AD的延長線交于點E,AF⊥l,垂足為F.
(1)求證:AC平分∠FAD;
(2)已知AF=3 ,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線;
(2)若PB=9,DB=12,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com