【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn),記定點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)O(0,0),A(2,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫(huà)圖.
(1)在圖1中畫(huà)一個(gè)整點(diǎn)三角形OAB,其中點(diǎn)B在第一象限,且點(diǎn)B的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫(huà)一個(gè)整點(diǎn)三角形OAC,其中點(diǎn)C的坐標(biāo)為(3t,t),且點(diǎn)C的橫、縱坐標(biāo)之和是點(diǎn)A的縱坐標(biāo)的2倍.請(qǐng)直接寫(xiě)出△OAC的面積.
【答案】(1)詳見(jiàn)解析;(2)10.
【解析】
(1) 由點(diǎn)A的橫坐標(biāo)為2, 且點(diǎn)B的橫、 縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo)可得點(diǎn)B坐標(biāo)為 (1, 1) , 據(jù)此可得;
(2) 由點(diǎn)A的縱坐標(biāo)為4且點(diǎn)C的橫、 縱坐標(biāo)之和是點(diǎn)A的縱坐標(biāo)的2倍可得3t+t=8, 解之得t=2, 據(jù)此知點(diǎn)C (6, 2) , 據(jù)此作圖可得, 再根據(jù)割補(bǔ)法求解可得.
解:(1)如圖所示,△OAB即為所求;
(2)如圖所示,△OAC即為所求,
S△OAC=6×4﹣×2×4﹣×6×2﹣×2×4=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過(guò)點(diǎn)C作⊙O的切線DE交AB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)A作切線DE的垂線,垂足為D,且與⊙O交于點(diǎn)F,設(shè)∠DAC,∠CEA的度數(shù)分別是α,β.
(1)用含α的代數(shù)式表示β,并直接寫(xiě)出α的取值范圍;
(2)連接OF與AC交于點(diǎn)O′,當(dāng)點(diǎn)O′是AC的中點(diǎn)時(shí),求α,β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明:如圖,點(diǎn)D,E,F分別是三角形ABC的邊BC,CA,AB上的點(diǎn),連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點(diǎn)G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】珠海市某中學(xué)開(kāi)展主題為“我愛(ài)閱讀”的專(zhuān)題調(diào)查活動(dòng),為了解學(xué)校1200名學(xué)生一年內(nèi)閱讀書(shū)籍量,隨機(jī)抽取部分學(xué)生進(jìn)行統(tǒng)計(jì),繪制成如下尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖.請(qǐng)根據(jù)圖表,解答下面的問(wèn)題:
分組 | 頻數(shù) | 頻率 |
0≤x<5 | 4 | 0.08 |
5≤x<10 | 14 | 0.28 |
10≤x<15 | 16 | a |
15≤x<20 | b | c |
20≤x<25 | 10 | 0.2 |
合計(jì) | d | 1.00 |
(1)a= ,b= c= .
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)根據(jù)該樣本,估計(jì)該校學(xué)生閱讀書(shū)籍?dāng)?shù)量在15本或15本以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,南沙區(qū)政府決定對(duì)區(qū)直屬機(jī)關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機(jī)抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計(jì)圖.
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),估計(jì)南沙區(qū)直屬機(jī)關(guān)300戶家庭中月平均用水量不超過(guò)12噸的約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一個(gè)含45°角的直角三角板BEF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,聯(lián)結(jié)DF,點(diǎn)M,N分別為DF,EF的中點(diǎn),聯(lián)結(jié)MA,MN.
(1)如圖1,點(diǎn)E,F分別在正方形的邊CB,AB上,請(qǐng)判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫(xiě)出結(jié)論;
(2)如圖2,點(diǎn)E,F分別在正方形的邊CB,AB的延長(zhǎng)線上,其他條件不變,那么你在(1)中得到的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在實(shí)施快樂(lè)大課間之前組織過(guò)“我最喜歡的球類(lèi)”的調(diào)查活動(dòng),每個(gè)學(xué)生僅選擇一項(xiàng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)求出被調(diào)查的學(xué)生人數(shù);
(2)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).如果確定小亮打第一場(chǎng),其余三人用“手心、手背”的方法確定誰(shuí)獲勝誰(shuí)打第一場(chǎng)若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請(qǐng)用樹(shù)狀圖分析大剛獲勝的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com