【題目】丁丁想在一個矩形材料中剪出如圖陰影所示的梯形,作為要制作的風(fēng)箏的一個翅膀.請你根據(jù)圖中的數(shù)據(jù)幫丁丁計算出BE、CD的長度(精確到個位, ≈1.7).

【答案】解:由∠ABC=120°可得∠EBC=60°,在Rt△BCE中,CE=51,∠EBC=60°, 因此tan60°= ,
∴BE= = =17 ≈29cm;
在Rt△ADF中,由∠FAD=45°,得∠ADF=∠DAF=45°,
因此DF=AF=51,
∴FC=AE≈34+29=63cm,
∴CD=FC﹣FD≈63﹣51=12cm,
因此BE的長度約為29cm,CD的長度約為12cm
【解析】在Rt△BCE中,CE=51,∠EBC=60°,求得BE,在Rt△ADF中,由∠FAD=45°,從而求得DF=AF=51,從而求得BE,CD的長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個正方體的表面展開圖,請回答下列問題:

(1)與面B、C相對的面分別是   ;

(2)若Aa3+a2b+3,Ba2b﹣3,Ca3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求EF分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=4,AC=6,ABC和ACB的平分線交于點E,過點E作MNBC分別交AB、AC于M、N,則AMN的周長為(  )

A. 10 B. 6 C. 4 D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是一個嚴(yán)重缺水的國家.為了加強(qiáng)公民的節(jié)水意識,某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費(fèi).該市某戶居民5月份用水x噸,應(yīng)交水費(fèi)y元.

1)若0x≤6,請寫出yx的函數(shù)關(guān)系式.

2)若x6,請寫出yx的函數(shù)關(guān)系式.

3)如果該戶居民這個月交水費(fèi)27元,那么這個月該戶用了多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示的數(shù)滿足且多項式是五次四項式

1的值為____ ____,的值為___ ____的值為____ ____;

2已知點、點是數(shù)軸上的兩個動點,點從點出發(fā),以個單位/秒的速度向右運(yùn)動,同時點從點出發(fā),以個單位/秒的速度向左運(yùn)動:

若點和點經(jīng)過秒后在數(shù)軸上的點處相遇,求出的值和點所表示的數(shù);

若點運(yùn)動到點處,動點再出發(fā),則運(yùn)動幾秒后這兩點之間的距離為5個單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的方格形中,點AB、C在小正方形的頂點上.在BC上找一點P,使點PABAC的距離相等.

實驗與操作:

(1)在BC上找一點P,使點PABAC的距離相等;

(2)在射線AP上找到一點Q,使QB=QC.

探索與計算:

如果A點坐標(biāo)為(-1,-3),

(1)試在圖中建立平面直角坐標(biāo)系;

(2)若點M、N是坐標(biāo)系中小正方形的頂點,且四邊形QCMN是一個正方形,則 M點的坐標(biāo)是__________,N點的坐標(biāo)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA= .特別地,當(dāng)點D、E重合時,規(guī)定:λA=0.另外,對λB、λC作類似的規(guī)定.

(1)如圖2,在△ABC中,∠C=90°,∠A=30°,求λA、λC
(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;
(3)判斷下列三個命題的真假(真命題打“√”,假命題打“×”):
①若△ABC中λA<1,則△ABC為銳角三角形;
②若△ABC中λA=1,則△ABC為直角三角形;
③若△ABC中λA>1,則△ABC為鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師從“淋浴龍頭”受到啟發(fā).編了一個題目: 在數(shù)軸上截取從0到3的對應(yīng)線段AB,實數(shù)m對應(yīng)AB上的點M,如圖1;將AB折成正三角形,使點A,B重合于點P,如圖2;建立平面直角坐標(biāo)系,平移此三角形,使它關(guān)于y軸對稱,且點P的坐標(biāo)為(0,2),PM與x軸交于點N(n,0),如圖3.當(dāng)m= 時,求n的值.

你解答這個題目得到的n值為(
A.4﹣2
B.2 ﹣4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里.

-4,,0,,-3.14,717,-(+5),+1.88,

(1)正數(shù)集合:{ … };

(2)負(fù)數(shù)集合:{ …};

(3)整數(shù)集合:{ …};

(4)分?jǐn)?shù)集合:{ … }.

查看答案和解析>>

同步練習(xí)冊答案