【題目】如圖,在矩形ABCD中,AB=5,BC=6,P為AD上一動(dòng)點(diǎn),把△ABP沿BP翻折,使點(diǎn)A落在點(diǎn)F處,連接CF,若BF=CF,則AP的長為_____.
【答案】
【解析】
過點(diǎn)F作EN∥DC交BC于點(diǎn)N,交AD于點(diǎn)E,設(shè)AP=x,則PF=x,得出(3﹣x)2+12=x2,解方程即可得解.
解:過點(diǎn)F作EN∥DC交BC于點(diǎn)N,交AD于點(diǎn)E,
∵四邊形ABCD是矩形,
∴∠A=∠D=∠DCB=90°,
∴FN⊥BC,FE⊥AD,
∵BF=CF,BC=6,
∴CN=BN=3,
由折疊的性質(zhì)可知,AB=BF=5,AP=PF,
∴,
∴EF=EN﹣FN=5﹣4=1,
設(shè)AP=x,則PF=x,
∵PE2+EF2=PF2,
∴(3﹣x)2+12=x2,
解得,,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+(b﹣)x+c=0(a≠0)的兩根之和( )
A. 大于0 B. 等于0 C. 小于0 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長度的最大值;
(3)在拋物線上是否存在異于的點(diǎn),使中邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,).[圖(2)為解答備用圖]
(1)__________,點(diǎn)A的坐標(biāo)為___________,點(diǎn)B的坐標(biāo)為__________;
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是CB延長線上一個(gè)動(dòng)點(diǎn),F、G分別為AE、BC的中點(diǎn),FG與ED相交于點(diǎn)H.
(1)求證:HE=HG;
(2)如圖2,當(dāng)BE=AB時(shí),過點(diǎn)A作AP⊥DE于點(diǎn)P,連接BP,求PQ與PB的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計(jì)算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
規(guī)格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐數(shù) | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價(jià)為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))
(1)如圖1,在ABCD中,點(diǎn)O是對角線的交點(diǎn),過點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F.求證:△AOE≌△COF;
(探究)
(2)如圖2,在菱形ABCD中,點(diǎn)O是對角線的交點(diǎn),過點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F,若AC=4,BD=8,求四邊形ABFE的面積.
(應(yīng)用)
(3)如圖3,邊長都為1的5個(gè)正方形如圖擺放,試?yán)脽o刻度的直尺,畫一條直線平分這5個(gè)正方形組成的圖形的面積.(要求:保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AG是正八邊形ABCDEFGH的一條對角線.
(1)在剩余的頂點(diǎn)B、C、D、E、F、H中,連接兩個(gè)頂點(diǎn),使連接的線段與AG平行,并說明理由;
(2)兩邊延長AB、CD、EF、GH,使延長線分別交于點(diǎn)P、Q、M、N,若AB=2,求四邊形PQMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對人成長的影響是很大的,某中學(xué)共1500名學(xué)生.為了了解學(xué)生課外閱讀的情況,就“你最喜歡的圖書類別”(只選一項(xiàng))隨機(jī)調(diào)查了部分學(xué)生,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪成如下統(tǒng)計(jì)表和統(tǒng)計(jì)圖(如圖).請你根據(jù)統(tǒng)計(jì)圖表提供的信息解答下列問題:
(1)這次隨機(jī)調(diào)查了 名學(xué)生;
(2)把統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)隨機(jī)調(diào)查一名學(xué)生,估計(jì)恰好是喜歡其他類圖書的概率是 ;
(4)此學(xué)校想為校圖書館增加書籍,請根據(jù)調(diào)查結(jié)果,為學(xué)校選擇一種學(xué)生最喜歡的書籍充實(shí)校圖書館,并說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com