【題目】a+3=b變?yōu)?/span>2(a+3)-5=2b-5,其過程中所用等式的性質及順序是( )

A. 先用等式的性質1,再用等式的性質2

B. 先用等式的性質2,再用等式的性質1

C. 僅用了等式的性質1

D. 僅用了等式的性質2

【答案】B

【解析】等式a+3=b,兩邊同時乘2,得2(a+3)=2b,兩邊再同時減5,得2(a+3)-5=2b-5,

所以先用了等式的性質2,然后又用了等式的性質1,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,設點P(x1,y1),Q(x2,y2)是圖形W上的任意兩點.

定義圖形W的測度面積:若|x1﹣x2|的最大值為m,|y1﹣y2|的最大值為n,則S=mn為圖形W的測度面積.

例如,若圖形W是半徑為1的⊙O,當P,Q分別是⊙O與x軸的交點時,如圖1,|x1﹣x2|取得最大值,且最大值m=2;當P,Q分別是⊙O與y軸的交點時,如圖2,|y1﹣y2|取得最大值,且最大值n=2.則圖形W的測度面積S=mn=4

(1)若圖形W是等腰直角三角形ABO,OA=OB=1.

①如圖3,當點A,B在坐標軸上時,它的測度面積S=

②如圖4,當AB⊥x軸時,它的測度面積S= ;

(2)若圖形W是一個邊長1的正方形ABCD,則此圖形的測度面積S的最大值為 ;

(3)若圖形W是一個邊長分別為3和4的矩形ABCD,求它的測度面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將7張如圖①所示的長為a、寬為b(a>b)的小長方形紙片,按如圖②所示的方式不重疊地放在長方形ABCD內,未被覆蓋的部分(兩個長方形)用陰影表示,設左上角與右下角的陰影部分的面積之差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b應滿足( )

A. a=b B. a=3b C. a=b D. a=4b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀材料,再解答下列問題:

我們已經知道,多項式與多項式相乘的法則可以用平面幾何圖形的面積來表示,實際上還有一些代數(shù)恒等式也可以用這種形式表示.例如:(2a+b) (a+b)=2a2+3ab+b2就可以用圖①或圖②等圖形的面積來表示.

(1)請寫出圖③所表示的代數(shù)恒等式:

(2)畫出一個幾何圖形,使它的面積能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.

(3)請仿照上述方法寫出另一個含a、b的代數(shù)恒等式,并畫出與之對應的幾何圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據義務教育均衡發(fā)展要求泗縣政府從2014年至2017年共投資20.93億元對全縣所有學校進行全面改造,20.93億用科學記數(shù)法表示為( 。

A. 20.93×108 B. 2.093×109 C. 2.093×108 D. 0.2093×1010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】月球距離地球約為3.84×105千米,一架飛機速度為8×102千米/時,若坐飛機飛行這么遠的距離需小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某天上午9時,向陽號輪船位于A處,觀測到某港口城市P位于輪船的北偏西67.5°,輪船以21海里/時的速度向正北方向行駛,下午2時該船到達B處,這時觀測到城市P位于該船的南偏西36.9°方向,求此時輪船所處位置B與城市P的距離?(參考數(shù)據:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中, 平分, 平分

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下面直角坐標系中,已知A0,a),Bb,0),Cb,c)三點,其中a、bc滿足關系式

1)求a、b、c的值;

2)如果在第二象限內有一點Pm, ),請用含m的式子表示四邊形ABOP的面積;

3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積為ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案