【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:
(1)這次活動(dòng)一共調(diào)查了名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角的度數(shù);
(3)若該學(xué)校有1200人,則該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是多少?
【答案】
(1)250
(2)解:選擇“籃球”的人數(shù)為:250﹣80﹣40﹣55=75(人),
選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角為: ×360°=108°
(3)解:估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是:1200×32%=384(人)
【解析】(1)由“足球”人數(shù)及其百分比可得總?cè)藬?shù);(2)根據(jù)各項(xiàng)目人數(shù)之和等于總?cè)藬?shù)求出“籃球”的人數(shù),補(bǔ)全圖形即可;(3)用“籃球”人數(shù)占被調(diào)查人數(shù)的比例乘以360°即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計(jì)圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計(jì)圖(能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再解決問題,例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴n=3,m=﹣3
(1)若x2+2y2﹣2xy+4y+4=0,求xy的值
(2)已知△ABC的三邊長a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請(qǐng)問△ABC是怎樣形狀的三角形?
(3)根據(jù)以上的方法是說明代數(shù)式:x2+4x+y2﹣8y+21的值一定是一個(gè)正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在八次數(shù)學(xué)測(cè)試中,甲、乙兩人的成績(jī)?nèi)缦拢?/span>
甲:89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92
請(qǐng)你從下列角度比較兩人成績(jī)的情況,并說明理由:
(1)分別計(jì)算兩人的極差;并說明誰的成績(jī)變化范圍大;
(2)根據(jù)平均數(shù)來判斷兩人的成績(jī)誰優(yōu)誰次;
(3)根據(jù)眾數(shù)來判斷兩人的成績(jī)誰優(yōu)誰次;
(4)根據(jù)中位數(shù)來判斷兩人的成績(jī)誰優(yōu)誰次;
(5)根據(jù)方差來判斷兩人的成績(jī)誰更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y1=tx2﹣1(t>0)和拋物線C2:y2=﹣4(x﹣h)2+1(h≥1).
(1)兩拋物線的頂點(diǎn)A、B的坐標(biāo)分別為和;
(2)設(shè)拋物線C2的對(duì)稱軸與拋物線C1交于點(diǎn)N,則t為何值時(shí),A、B、M、N為頂點(diǎn)的四邊形是平行四邊形.
(3)設(shè)拋物線C1與x軸的左交點(diǎn)為點(diǎn)E,拋物線C2與x軸的右邊交點(diǎn)為點(diǎn)F,試問,在第(2)問的前提下,四邊形AEBF能否為矩形?若能,求出h值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王玩游戲:一張紙片,第一次將其撕成四小片,以后每次都將其中一片撕成更小的四片,如此進(jìn)行下去.
(1)填空:當(dāng)小王撕了3次后,共有________張紙片;
(2)填空:當(dāng)小王撕了n次后,共有________張紙片.(用含n的代數(shù)式表示)
(3)小王說:我撕了若干次后,共有紙片2013張,小王說的對(duì)不對(duì)?若不對(duì),請(qǐng)說明你的理由;若對(duì)的,請(qǐng)指出小王需撕多少次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:已知Q、K、R為數(shù)軸上三點(diǎn),若點(diǎn)K到點(diǎn)Q的距離是點(diǎn)K到點(diǎn)R的距離的2倍,我們就稱點(diǎn)K是有序點(diǎn)對(duì)的好點(diǎn).
根據(jù)下列題意解答問題:
(1)如圖1,數(shù)軸上點(diǎn)Q表示的數(shù)為1,點(diǎn)P表示的數(shù)為0,點(diǎn)K表示的數(shù)為1,點(diǎn)R表示的數(shù)為2.因?yàn)辄c(diǎn)K到點(diǎn)Q的距離是2,點(diǎn)K到點(diǎn)R的距離是1,所以點(diǎn)K是有序點(diǎn)對(duì)的好點(diǎn),但點(diǎn)K不是有序點(diǎn)對(duì)的好點(diǎn).同理可以判斷:點(diǎn)P是不是有序點(diǎn)對(duì)的好點(diǎn);
(2)如圖2,數(shù)軸上點(diǎn)M表示的數(shù)為-1,點(diǎn)N表示的數(shù)為5,點(diǎn)H表示的數(shù)為x,若點(diǎn)H是有序點(diǎn)對(duì)的好點(diǎn),求x的值;
(3)如圖3,數(shù)軸上點(diǎn)A表示的數(shù)為20,點(diǎn)B表示的數(shù)為10.現(xiàn)有一只電子螞蟻C從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度向左運(yùn)動(dòng)t秒(t>0).當(dāng)點(diǎn)A、B、C中恰有一個(gè)點(diǎn)為其余兩有序點(diǎn)對(duì)的好點(diǎn),直接寫出t的所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船在A處時(shí)觀測(cè)得小島C在船的北偏東60°方向,輪船以40海里/時(shí)的速度向正東方向航行1.5小時(shí)到達(dá)B處,這時(shí)小島C在船的北偏東30°方向.已知小島C周圍50海里范圍內(nèi)是暗礁區(qū).
(1)求B處到小島C的距離
(2)若輪船從B處繼續(xù)向東方向航行,有無觸礁危險(xiǎn)?請(qǐng)說明理由.
(參考數(shù)據(jù): ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,∠ABC的角平分線BE將邊AD分成長度為5cm和6cm的兩部分,則平行四邊形ABCD的周長為__________________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過計(jì)算說明OE是否平分∠BOC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com