20.已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長(zhǎng)線)于點(diǎn)M,N.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證MN=BM+DN.
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DN和MN之間有怎樣的數(shù)量關(guān)系?寫(xiě)出猜想,并加以證明.
(3)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系?寫(xiě)出猜想,并加以證明.

分析 (1)連接AC,交MN于點(diǎn)G,則可知AC垂直平分MN,結(jié)合∠MAN=45°,可證明△ABM≌△AGM,可得到BM=MG,同理可得到NG=DN,可得出結(jié)論;
(2)在MB的延長(zhǎng)線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,可得到AE=AN,進(jìn)一步可證明△AEM≌△ANM,可得結(jié)論BM+DN=MN;
(3)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,進(jìn)一步可證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN

解答 解:(1)如圖1,連接AC,交MN于點(diǎn)G,

∵四邊形ABCD為正方形,
∴BC=CD,且BM=DN,
∴CM=CN,且AC平分∠BCD,
∴AC⊥MN,且MG=GN,
∴∠MAG=∠NAG,
∵∠BAC=∠MAN=45°,即∠BAM+∠GAM=∠GAM+∠GAN,
∴∠BAM=∠GAN=∠GAM,
在△ABM和△AGM中,$\left\{\begin{array}{l}{∠B=∠AGM=90°}\\{∠BAM=∠GAM}\\{AM=AM}\end{array}\right.$
∴△ABM≌△AGM(AAS),
∴BM=MG,同理可得GN=DN,
∴BM+DN=MG+GN=MN,
∴BM+DN=MN;
(2)猜想:BM+DN=MN,
證明如下:
如圖2,在MB的延長(zhǎng)線上,截取BE=DN,連接AE,

在△ABE和△ADN中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABE=∠D}\\{BE=DN}\end{array}\right.$
∴△ABE≌△ADN(SAS),
∴AE=AN,∠EAB=∠NAD,
∵∠BAD=90°,∠MAN=45°,
∴∠BAM+∠DAN=45°,
∴∠EAB+∠BAM=45°,
∴∠EAM=∠NAM,
在△AEM和△ANM中$\left\{\begin{array}{l}{AE=AN}\\{∠EAM=∠NAM}\\{AM=AM}\end{array}\right.$
∴△AEM≌△ANM(SAS),
∴ME=MN,
又ME=BE+BM=BM+DN,
∴BM+DN=MN;
(3)DN-BM=MN.
證明如下:
如圖3,在DC上截取DF=BM,連接AF,

△ABM和△ADF中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠D}\\{BM=DF}\end{array}\right.$,
∴△ABM≌△ADF(SAS),
∴AM=AF,∠BAM=∠DAF,
∴∠BAM+∠BAF=∠BAF+∠DAF=90°,即MAF=∠BAD=90°,
∵∠MAN=45°,
∴∠MAN=∠FAN=45°,
在△MAN和△FAN中,$\left\{\begin{array}{l}{AM=AF}\\{∠MAN=∠FAN}\\{AN=AN}\end{array}\right.$
∴△MAN≌△FAN(SAS),
∴MN=NF,
∴MN=DN-DF=DN-BM,
∴DN-BM=MN.

點(diǎn)評(píng) 此題為四邊形的綜合題,涉及知識(shí)點(diǎn)有正方形的性質(zhì)、全等三角形的判定和性質(zhì)、垂直平分線的判定和性質(zhì)等.在(1)中證得AM=AN是解題的關(guān)鍵,在(2)、(3)中構(gòu)造三角形全等是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)不多,但三角形全等的構(gòu)造難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖①在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=$\frac{底邊}{腰}=\frac{BC}{AB}$.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=1.
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是0<sadA<2.
(3)如圖②,Rt△ABC中,已知sinA=$\frac{3}{5}$,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖是小強(qiáng)用八塊相同的小立方體搭成的一個(gè)幾何體,從正面、左面和上面觀察這個(gè)幾何體,請(qǐng)你在下面相應(yīng)的位置分別畫(huà)出你所看到的幾何體的形狀圖(在答題卡上畫(huà)完圖后請(qǐng)用黑色簽字筆描圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+2交x正半軸 于點(diǎn)A,交x軸負(fù)半軸于點(diǎn)B,交y軸于點(diǎn)C,OB=OC,連接AC,tan∠OCA=2.
(1)求拋物線的解析式;
(2)點(diǎn)P是第三象限拋物線y=ax2+bx+2上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交直線AC于點(diǎn)D,設(shè)PD的長(zhǎng)為d,點(diǎn)P的橫坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,連接PA,PC,當(dāng)△ACP的面積為30時(shí),將△APC沿AP折疊得△APC′,點(diǎn)C′為點(diǎn)C的對(duì)應(yīng)點(diǎn),求點(diǎn)C′坐標(biāo)并判斷點(diǎn)C′是否在拋物線y=ax2+bx+2上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形ABCD和一個(gè)長(zhǎng)為2,寬為1的長(zhǎng)方形CEFD拼在一起,構(gòu)成一個(gè)大的長(zhǎng)方形ABEF,現(xiàn)將小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)邊CD′恰好經(jīng)過(guò)EF的中點(diǎn)H時(shí),求旋轉(zhuǎn)角α的大;
(2)如圖2,G為BC中點(diǎn),且0°<α<90°,求證:GD′=E′D;
(3)小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過(guò)程中,△DCD′與△BCD′能否全等?若能,直接寫(xiě)出旋轉(zhuǎn)角α的大;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,直角坐標(biāo)系中,O為原點(diǎn),A(6,0),在等腰三角形ABO中,OB=BA=5,點(diǎn)B在第一象限,C(0,k)為y軸正半軸上一動(dòng)點(diǎn),作以∠CBD為頂角的等腰三角形CBD,且∠CBD=∠OBA,連結(jié)AD.
(1)①求點(diǎn)B的坐標(biāo);②若BD∥OC,求k的值.
(2)求證:OC=AD;
(3)設(shè)直線AD與y軸交于點(diǎn)M(0,m),當(dāng)點(diǎn)C在y軸上運(yùn)動(dòng)時(shí),點(diǎn)M的位置是否改變?若改變,求m與k的函數(shù)關(guān)系式,若不變,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一次函數(shù)y=-$\frac{{\sqrt{3}}}{3}$x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以AB為邊在第一象限內(nèi)做等邊△ABC
(1)求△ABC的面積和點(diǎn)C的坐標(biāo);
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,$\frac{1}{2}$),試用含a的代數(shù)式表示四邊形ABPO的面積.
(3)在x軸上是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b是二元一次方程組$\left\{\begin{array}{l}{a+b-4=0}\\{\frac{1}{2}a-2b+13=0}\end{array}\right.$的解.
(1)求OA、OB的長(zhǎng)度;
(2)若P從點(diǎn)B出發(fā)沿著射線BO方向運(yùn)動(dòng)(點(diǎn)P不與原點(diǎn)重合),速度為每秒2個(gè)單位長(zhǎng)度,連接AP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,△AOP的面積為S.請(qǐng)你用含t的式子表示S;
(3)在(2)的條件下,點(diǎn)Q與點(diǎn)P同時(shí)運(yùn)動(dòng),點(diǎn)Q從A點(diǎn)沿x軸正方向運(yùn)動(dòng),Q點(diǎn)速度為每秒1個(gè)單位長(zhǎng)度,當(dāng)S△AOP=4時(shí),求S△APQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若k為整數(shù),且關(guān)于x的方程(x+1)2=1-k沒(méi)有實(shí)根,則滿足條件的k的值為2(只需寫(xiě)一個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案