【題目】實(shí)踐與操作:我們?cè)趯W(xué)習(xí)四邊形的相關(guān)知識(shí)時(shí),認(rèn)識(shí)了平行四邊形、矩形、菱形、正方形等一些特殊的四邊形,下面我們用尺規(guī)作圖的方法來(lái)體會(huì)它們之間的聯(lián)系.如圖,在ABCD中,AB=4,BC=6,∠ABC=60°,請(qǐng)完成下列任務(wù):
(1)在圖1中作一個(gè)菱形,使得點(diǎn)A、B為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在ABCD的邊上;在圖2中作一個(gè)菱形,使點(diǎn)B、D為所作菱形的2個(gè)頂點(diǎn),另外2個(gè)頂點(diǎn)在ABCD的邊上;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)請(qǐng)?jiān)趫D形下方橫線處直接寫(xiě)出你按(1)中要求作出的菱形的面積.
【答案】
(1)解:如圖所示:
(2)解:如圖1,作ABCD的高AH.
在直角△ABH中,∵AB=4,∠ABC=60°,
∴AH=ABsin60°=4× =2 ,BH=ABcos60°=4× =2,
∴S菱形ABEF=BEAH=4×2 =8 ;
如圖2,設(shè)BD與EF交于點(diǎn)O,作DM⊥BC于M,則CM=BH=2,DM=AH=2 .
在直角△BDM中,∵∠M=90°,
∴BD= = =2 .
設(shè)BF=x,CF=y,則DF=x,
由題意得 ,
解得 ,
∴OF= = = ,
∴S菱形ABEF= BDEF= ×2 × = .
【解析】(1)如圖1,在AD、BC上分別截取AF=BE=4,連結(jié)EF,則四邊形ABEF是菱形;如圖2,連結(jié)BD,作BD的垂直平分線,交AD于E,BC于F,則四邊形BEDF是菱形;(2)如圖1,作ABCD的高AH,根據(jù)菱形的面積=底×高列式計(jì)算即可;如圖2,設(shè)BD與EF交于點(diǎn)O,作DM⊥BC于M,則CM=BH=2,DM=AH=2 .分別求出BD與EF,根據(jù)菱形的面積=兩對(duì)角線乘積的一半列式計(jì)算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)菱形的性質(zhì)的理解,了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)模擬測(cè)試中,六名學(xué)生的數(shù)學(xué)成績(jī)?nèi)缦拢▎挝唬悍郑?10,106,109,111,108,110,下列關(guān)于這組數(shù)據(jù)描述正確的是( )
A.眾數(shù)是110
B.方差是16
C.平均數(shù)是109.5
D.極差是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點(diǎn)E為線段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過(guò)點(diǎn)E作EF∥CD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y= .
(1)求BD的長(zhǎng);
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時(shí),求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,若ED:DC=2:3,△DEF的面積為8,則平行四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代典籍《莊子天下篇》中曾說(shuō)過(guò)一句話:“一尺之棰,日取其半,萬(wàn)世不竭”,現(xiàn)有一根長(zhǎng)為1尺的木桿,第1次截取其長(zhǎng)度的一半,第2次截取其第1次剩下長(zhǎng)度的一半,第3次截取其第2次剩下長(zhǎng)度的一半,如此反復(fù),則第99次截取后,此木桿剩下的長(zhǎng)度為( )
A. 尺
B. 尺
C. 尺
D. 尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:數(shù)學(xué)活動(dòng)課上老師出示問(wèn)題,如圖1,有邊長(zhǎng)為a的正方形紙片一張,三邊長(zhǎng)分別為a、b、c的全等直角三角形紙片兩張,且b .請(qǐng)你用這三張紙片拼出一個(gè)圖案,并將這個(gè)圖案的某部分進(jìn)行旋轉(zhuǎn)或平移變換之后,提出一個(gè)問(wèn)題(可以添加其他條件,例如可以給出a、b的值等等).
解決問(wèn)題:
下面是兩個(gè)學(xué)習(xí)小組拼出圖案后提出的問(wèn)題,請(qǐng)你解決他們提出的問(wèn)題.
(1)“愛(ài)心”小組提出的問(wèn)題是:如圖2,將△DFC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn),使點(diǎn)D恰好落在AD邊上的點(diǎn)D′處,猜想此時(shí)四邊形AEFD′是什么特殊四邊形,并加以證明;
(2)“希望”小組提出的問(wèn)題是:如圖3,點(diǎn)M為BE中點(diǎn),將△DCF向左平移至DF恰好過(guò)點(diǎn)M時(shí)停止,且補(bǔ)充條件a=6,b=2,求△DCF平移的距離.
自主創(chuàng)新:
(3)請(qǐng)你仿照上述小組的同學(xué),在下面圖4的空白處用實(shí)線畫(huà)出你拼出的圖案,用虛線畫(huà)出變換圖,并在橫線處寫(xiě)出你提出的問(wèn)題.(不必解答)
你提出的問(wèn)題: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)計(jì)算:( )0+ ﹣|﹣3|+tan45°;
(2)計(jì)算:(x+2)2﹣2(x﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E在反比例函數(shù)y= 的圖像上,OA=1,OC=6,試求出正方形ADEF的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com