【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABD=∠CBD=60°,AC與BD相交于點(diǎn)E,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)F.
(1)判斷△ACD的形狀,并加以證明
(2)若CF=2,DE=4,求弦CD的長.
【答案】
(1)解:∵∠ABD=∠CBD=60°,
∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,
∴△ACD是等邊三角形;
(2)解:在△ACF與△DCE中,
∴△ACF≌△DCE,
∴AF=DE=4,CE=CF=2,
∵CF是⊙O的切線,
∴FC2=FBAF,
∴22=FB4,
∴FB=1
∴AB=AF﹣BF=4﹣1=3,
∵∠ABE=∠DCE,∠BAE=∠CDE,
∴△∠ABE∽∠DCE,
∴ = = = ,
∴ = ,
解得:CD=3.
【解析】(1)根據(jù)圓周角定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=DE=4,CE=CF=2,根據(jù)切線的性質(zhì)得到FC2=FBAF,求得FB=1根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓內(nèi)接四邊形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,每個(gè)小正方形的邊長均為1個(gè)單位長度有一個(gè)△ABC,它的三個(gè)頂點(diǎn)均與小正方形的頂點(diǎn)重合.
(1)將△ABC向右平移3個(gè)單位長度,得到△DEF(A與D、B與E、C與F對(duì)應(yīng)),請(qǐng)?jiān)诜礁窦堉挟嫵觥鱀EF;
(2)在(1)的條件下,連接AE和CE,請(qǐng)直接寫出△ACE的面積S,并判斷B是否在邊AE上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對(duì)于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風(fēng)箏的骨架相似. |
如果只研究一般的箏形(不包括菱形),請(qǐng)根據(jù)以上材料完成下列任務(wù):
如果只研究一般的箏形(不包括菱形),請(qǐng)根據(jù)以上材料完成下列任務(wù):
(1)請(qǐng)說出箏形和菱形的相同點(diǎn)和不同點(diǎn)各兩條;
(2)請(qǐng)仿照?qǐng)D1的畫法,在圖2所示的8×8網(wǎng)格中重新設(shè)計(jì)一個(gè)由四個(gè)全等的箏形和四個(gè)全等的菱形組成的新圖案,具體要求如下:
①頂點(diǎn)都在格點(diǎn)上;
②所設(shè)計(jì)的圖案既是軸對(duì)稱圖形又是中心對(duì)稱圖形;
③將新圖案中的四個(gè)箏形都圖上陰影(建議用一系列平行斜線表示陰影).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好在函數(shù)y= (x>0)的圖象上,此時(shí)點(diǎn)A移動(dòng)的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系第一象限內(nèi),直線y=x與直線y=2x的內(nèi)部作等腰Rt△ABC,是∠ABC=90°,邊BC∥x軸,AB∥y軸,點(diǎn)A(1,1)在直線y=x上,點(diǎn)C在直線y=2x上:CB的延長線交直線y=x于點(diǎn)A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x軸,A1B1∥y軸,點(diǎn)C1在直線y=2x上…按此規(guī)律,則等腰Rt△AnBnCn的腰長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點(diǎn),與y軸交于C點(diǎn),D為拋物線的頂點(diǎn),E為拋物線上一點(diǎn),且C、E關(guān)于拋物線的對(duì)稱軸對(duì)稱,分別作直線AE、DE.
(1)求此二次函數(shù)的關(guān)系式;
(2)在圖1中,直線DE上有一點(diǎn)Q,使得△QCO≌△QBO,求點(diǎn)Q的坐標(biāo);
(3)如圖2,直線DE與x軸交于點(diǎn)F,點(diǎn)M為線段AF上一個(gè)動(dòng)點(diǎn),有A向F運(yùn)動(dòng),速度為每秒2個(gè)單位長度,運(yùn)動(dòng)到F處停止,點(diǎn)N由F處出發(fā),沿射線FE方向運(yùn)動(dòng),速度為每秒 個(gè)單位長度,M、N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)M停止時(shí)點(diǎn)N同時(shí)停止運(yùn)動(dòng)坐標(biāo)平面內(nèi)有一個(gè)動(dòng)點(diǎn)P,t為何值時(shí),以P、M、N、F為頂點(diǎn)的四邊形是特殊的平行四邊形.請(qǐng)直接寫出t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測的成績繪制成如下統(tǒng)計(jì)圖:
(1)根據(jù)圖中提供的數(shù)據(jù)列出如下統(tǒng)計(jì)表:
平均成績(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(S2) | |
王華 | 80 | b | 80 | d |
張偉 | a | 85 | c | 260 |
則a= , b= , c= , d= ,
(2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是 .
(3)現(xiàn)在要從這兩個(gè)同學(xué)選一位去參加數(shù)學(xué)競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是自行車騎行訓(xùn)練場地的一部分,半圓O的直徑AB=100,在半圓弧上有一運(yùn)動(dòng)員C從B點(diǎn)沿半圓周勻速運(yùn)動(dòng)到M(最高點(diǎn)),此時(shí)由于自行車故障原地停留了一段時(shí)間,修理好繼續(xù)以相同的速度運(yùn)動(dòng)到A點(diǎn)停止.設(shè)運(yùn)動(dòng)時(shí)間為t,點(diǎn)B到直線OC的距離為d,則下列圖象能大致刻畫d與t之間的關(guān)系是( 。
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com