【題目】如圖,在方格紙中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度有一個(gè)△ABC,它的三個(gè)頂點(diǎn)均與小正方形的頂點(diǎn)重合.

(1)將△ABC向右平移3個(gè)單位長(zhǎng)度,得到△DEF(A與D、B與E、C與F對(duì)應(yīng)),請(qǐng)?jiān)诜礁窦堉挟嫵觥鱀EF;
(2)在(1)的條件下,連接AE和CE,請(qǐng)直接寫出△ACE的面積S,并判斷B是否在邊AE上.

【答案】
(1)解:如圖所示


(2)解:由圖可知,S=5×4﹣ ×4×1﹣ ×2×4﹣ ×2×5=20﹣2﹣4﹣5=9.

根據(jù)圖形可知,點(diǎn)B不在AE邊上


【解析】(1)根據(jù)圖形平移的性質(zhì)畫出平移后的三角形即可;(2)連接AE和CE,利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可得出S的值,根據(jù)圖形可得出點(diǎn)B的位置.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為強(qiáng)化安全意識(shí),某校擬在周一至周五的五天中隨機(jī)選擇2天進(jìn)行緊急疏散演練,請(qǐng)完成下列問題:
(1)周三沒有被選擇的概率;
(2)選擇2天恰好為連續(xù)兩天的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,F(xiàn)為⊙O上一點(diǎn),AC平分∠BAF且交⊙O于點(diǎn)C,過點(diǎn)C作CD⊥AF于點(diǎn)D,延長(zhǎng)AB、DC交于點(diǎn)E,連接BC,CF.

(1)求證:CD是⊙O的切線;
(2)若AD=6,DE=8,求BE的長(zhǎng);
(3)求證:AF+2DF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽(yáng).( 取1.73)

(1)求樓房的高度約為多少米?
(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊△ABC中,點(diǎn)D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點(diǎn)B落在點(diǎn)Bˊ處,DBˊ,EBˊ分別交邊AC于點(diǎn)F,G,若∠ADF=80°,則∠EGC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是直線l外一點(diǎn),在l上取兩點(diǎn)B,C,分別以A,C為圓心,BC,AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)D,分別連接AB,AD,CD,若∠ABC+∠ADC=120°,則∠A的度數(shù)是(

A.100°
B.110°
C.120°
D.125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量山頂鐵塔AE的高,他們?cè)?0m高的樓CD的底部點(diǎn)D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵的開通,給衢州市民出行帶來(lái)了極大的方便,“五一”期間,樂樂和穎穎相約到杭州市的某游樂園游玩,樂樂乘私家車從衢州出發(fā)1小時(shí)后,穎穎乘坐高鐵從衢州出發(fā),先到杭州火車站,然后再轉(zhuǎn)車出租車去游樂園(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)游樂園,他們離開衢州的距離y(千米)與乘車時(shí)間t(小時(shí))的關(guān)系如圖所示. 請(qǐng)結(jié)合圖象解決下面問題:

(1)高鐵的平均速度是每小時(shí)多少千米?
(2)當(dāng)穎穎達(dá)到杭州火車東站時(shí),樂樂距離游樂園還有多少千米?
(3)若樂樂要提前18分鐘到達(dá)游樂園,問私家車的速度必須達(dá)到多少千米/小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABD=∠CBD=60°,AC與BD相交于點(diǎn)E,過點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)F.
(1)判斷△ACD的形狀,并加以證明
(2)若CF=2,DE=4,求弦CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案