【題目】綜合與實(shí)踐:

操作與發(fā)現(xiàn):

如圖,已知A,B兩點(diǎn)在直線CD的同一側(cè),線段AEBF均是直線CD的垂線段,且BFAE的右邊,AE2BF,將BF沿直線CD向右平移,在平移過(guò)程中,始終保持∠ABP90°不變,BP邊與直線CD相交于點(diǎn)P,點(diǎn)GAE的中點(diǎn),連接BG

探索與證明:求證:

1)四邊形EFBG是矩形;

2ABG∽△PBF

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)先通過(guò)等量代換得出GEBF,然后由AECD,BFCD得出AEBF,從而得到四邊形EFBG是平行四邊形,最后利用BFCD,則可證明平行四邊形EFBG是矩形;

2)先通過(guò)矩形的性質(zhì)得出∠AGB=∠GBF=∠BFE90°,然后通過(guò)等量代換得出∠ABG=∠PBF,再加上∠AGB=∠PFB90°即可證明△ABG∽△PBF

1)證明:∵AECDBFCD,

AEBF

AE2BF,

BFAE

∵點(diǎn)GAE的中點(diǎn),

GEAE,

GEBF,又AEBF,

∴四邊形EFBG是平行四邊形,

BFCD,

∴平行四邊形EFBG是矩形;

2)∵四邊形EFBG是矩形,

∴∠AGB=∠GBF=∠BFE90°,

∵∠ABP90°

∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,

即∠ABG=∠PBF,

∵∠ABG=∠PBF,∠AGB=∠PFB90°,

∴△ABG∽△PBF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB的直徑,C上一點(diǎn),連接AC,過(guò)點(diǎn)C作直線D),點(diǎn)EDB上任意一點(diǎn)(點(diǎn)D、B除外),直線CE于點(diǎn)F.連接AF與直線CD交于點(diǎn)G.

1)求證:

2)若點(diǎn)EAD(點(diǎn)A除外)上任意一點(diǎn),上述結(jié)論是否仍然成立?若成立,請(qǐng)畫(huà)出圖形并給予證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的邊OAx軸上,邊OCy軸上,點(diǎn)B的坐標(biāo)為(10,8),沿直線OD折疊矩形,使點(diǎn)A正好落在BC上的E處,E點(diǎn)坐標(biāo)為(6,8),拋物線y=ax2+bx+c經(jīng)過(guò)OA、E三點(diǎn).

1)求此拋物線的解析式;

2)求AD的長(zhǎng);

3)點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)△PAD的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再?gòu)闹须S機(jī)抽出一張記下數(shù)字.

1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(x,y)落在直線y=x上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx+3分別與x軸、y軸交于點(diǎn)AC,直線ymx+分別與x軸、y軸交于點(diǎn)B、D,直線AC與直線BD相交于點(diǎn)M(﹣1,b

1)不等式x+3≤mx+的解集為   

2)求直線AC、直線BDx軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22時(shí),

教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45時(shí),教學(xué)樓頂A在地面上的影子F與墻角C13m的距離(B、FC在一條直線上)

(1)求教學(xué)樓AB的高度;

(2)學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin22≈,cos22≈,tan22≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A23),B(﹣3n)兩點(diǎn).

1)求反比例函數(shù)的解析式;

2)過(guò)B點(diǎn)作BCx軸,垂足為C,若P是反比例函數(shù)圖象上的一點(diǎn),連接PC,PB,求當(dāng)△PCB的面積等于5時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根

1求實(shí)數(shù)k的取值范圍;

2滿足,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案