【題目】如圖,等腰△ABC三個(gè)頂點(diǎn)在⊙O上,直徑AB=12,P為弧BC上任意一點(diǎn)(不與B,C重合),直線CP交AB延長(zhǎng)線與點(diǎn)Q,2∠PAB+∠PDA=90°,下列結(jié)論:①若∠PAB=30°,則弧BP的長(zhǎng)為;②若PD//BC,則AP平分∠CAB;③若PB=BD,則,④無(wú)論點(diǎn)P在弧上的位置如何變化,CP·CQ為定值. 正確的是___________.
【答案】②③④.
【解析】試題解析:如圖,連接OP,
∵AO=OP,∠PAB=30°,
∴∠POB=60°,
∵AB=12,
∴OB=6,
∴弧的長(zhǎng)為=2π,故①錯(cuò)誤;
∵PD是⊙O的切線,
∴OP⊥PD,
∵PD∥BC,
∴OP⊥BC,
∴=,
∴∠PAC=∠PAB,
∴AP平分∠CAB,故②正確;
若PB=BD,則∠BPD=∠BDP,
∵OP⊥PD,
∴∠BPD+∠BPO=∠BDP+∠BOP,
∴∠BOP=∠BPO,
∴BP=BO=PO=6,即△BOP是等邊三角形,
∴PD=OP=6,故③正確;
∵AC=BC,
∴∠BAC=∠ABC,
又∵∠ABC=∠APC,
∴∠APC=∠BAC,
又∵∠ACP=∠QCA,
∴△ACP∽△QCA,
∴,即CPCQ=CA2(定值),故④正確;
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,6)和點(diǎn)B(﹣3,n),直線AB與y軸交于點(diǎn)C.
(1)求直線AB的表達(dá)式;
(2)求AC:CB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某開(kāi)發(fā)商進(jìn)行商鋪促銷(xiāo),廣告上寫(xiě)著如下條款:投資者購(gòu)買(mǎi)商鋪后,必須由開(kāi)發(fā)商代租賃5年,5年期滿(mǎn)后由開(kāi)發(fā)商以比原商鋪標(biāo)價(jià)高20%的價(jià)格進(jìn)行回購(gòu),投資者可在以下兩種購(gòu)鋪方案中做出選擇:
方案一:按照商鋪標(biāo)價(jià)一次性付清鋪款,每年可獲得的租金為商鋪標(biāo)價(jià)的10%;
方案二:按商鋪標(biāo)價(jià)的八折一次性付清鋪款,前3年商鋪的租金收益歸開(kāi)發(fā)商所有,3年后每年可獲得的租金為商鋪標(biāo)價(jià)的9%
(1)問(wèn)投資者選擇哪種購(gòu)鋪方案,5年后所獲得的投資收益率更高?為什么?
(注:投資收益率=×100%)
(2)對(duì)同一標(biāo)價(jià)的商鋪,甲選擇了購(gòu)鋪方案一,乙選擇了購(gòu)鋪方案二,那么5年后兩人獲得的收益相差7.2萬(wàn)元.問(wèn)甲乙兩人各投資了多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,分別表示使用一種白熾燈和一種節(jié)能燈的費(fèi)用(費(fèi)用燈的售價(jià)電費(fèi),單位:元)與照明時(shí)間(小時(shí))的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是小時(shí),照明效果一樣.
(1)根據(jù)圖象分別求出,的函數(shù)表達(dá)式;
(2)小亮認(rèn)為節(jié)能燈一定比白熾燈省錢(qián),你是如何想的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫(xiě)出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長(zhǎng)線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿(mǎn)足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體.
(1)請(qǐng)用粗實(shí)線在虛線網(wǎng)格中順次畫(huà)出這個(gè)幾何體的主視圖、左視圖和俯視圖;
(2)如果在這個(gè)幾何體上拿掉一些小正方體,并保持這個(gè)幾何體的主視圖和俯視圖不變,那么最多可以拿掉___________小正方體;
(3)如果在這個(gè)幾何體上再添加一些相同的小正方體,并保持這個(gè)幾何體的左視圖和俯視圖不變,那么最多可以再添加________個(gè)小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),數(shù)軸上有一個(gè)表示數(shù)的點(diǎn),已知點(diǎn)在數(shù)軸上移動(dòng)個(gè)單位長(zhǎng)度后表示的數(shù)是,那么的值是 ;
(2)如圖(2),有一根木尺放置在數(shù)軸上,它的兩端分別落在兩點(diǎn)處.將木尺在數(shù)軸上水平移動(dòng),當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),點(diǎn)所對(duì)應(yīng)的數(shù)為;當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),點(diǎn)所對(duì)應(yīng)的數(shù)為(單位:).利用所學(xué)知識(shí)求出點(diǎn)、點(diǎn)所表示的數(shù)及木尺的長(zhǎng).
(3)借助上面的方法解決問(wèn)題:一天,小明去問(wèn)爺爺?shù)哪挲g,爺爺說(shuō):我若是你現(xiàn)在這么大,你還要年才出生呢,你若是我現(xiàn)在這么大,我已經(jīng)是歲!小明納悶,爺爺今年到底是多少歲?請(qǐng)你畫(huà)出示意圖,求出小明和爺爺?shù)哪挲g,并寫(xiě)出合理的計(jì)算過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com