【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
… | 0 | 1 | 3 | … | ||
… | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A. 拋物線開口向上 B. 拋物線與軸交于負(fù)半軸
C. 當(dāng)時, D. 方程的正根在3與4之間
【答案】D
【解析】由表可知,當(dāng) 和時, .
由拋物線關(guān)于對稱軸對稱,可得出此函數(shù)的對稱軸是
根據(jù)表中y值的變化規(guī)律可知,在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,
∴此拋物線開口向下,
故選項A錯誤;
當(dāng)時,根據(jù)表中數(shù)據(jù)可知
∴此拋物線與y軸交于點(0,1)
即拋物線與軸交于正半軸
故選項B錯誤;
由拋物線的對稱性可知:當(dāng) 和時的函數(shù)值相等,即 ,
∴當(dāng)時,,
故選項C錯誤;
由表可知,當(dāng)時,,
即拋物線與x軸的一個交點在-1和0之間,由拋物線的對稱性可知,另一個交點應(yīng)在3和4之間,
∴方程的正根在3與4之間.
故選項D正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項成績?nèi)缦拢▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學(xué)生甲 | 90 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙成績的中位數(shù);
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段和射線交于點.
()利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法).
①在射線上作一點,使,連接;
②作的角平分線交于點;
③在射線上作一點,使,連接.
()在()所作的圖形中,通過觀察和測量可以發(fā)現(xiàn),請將下面的證明過程補充完整.
證明:∵,
∴____________________,①
∵平分,
∴,
∴__________,②
∵,
∴,
∵,
∴,
∴,
∴.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB、CE是直徑,BD⊥CE于G,交⊙O于點D,連接CD、CB.
(1)如圖1,求證:∠DCO=90°-∠COB;
(2)如圖2,連接BE,過點G作BE的垂線分別交BE、AB、CD于點F、H、M,求證:MC=MD;
(3)在(2)的條件下,連接AC交MF于點N,若MN=1,NH=4,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年2班組織了一次經(jīng)典誦讀比賽,甲乙兩組各10人的比賽成績?nèi)缦卤恚?/span>10分制):
(I)甲組數(shù)據(jù)的中位數(shù)是 ,乙組數(shù)據(jù)的眾數(shù)是 ;
(Ⅱ)計算乙組數(shù)據(jù)的平均數(shù)和方差;
(Ⅲ)已知甲組數(shù)據(jù)的方差是1.4分2,則成績較為整齊的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把算式-2-3-(+14)寫成加法的形式是( )
A. (-2)+(-3)+(-14)B. (-2)+(-3)-(-14)
C. (-2)+(+3)+(-14)D. (-2)+(+3)+(+14)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com