【題目】為給同學們創(chuàng)造更好的讀書條件,學校準備新建一個長度為L的度數(shù)長廊,并準備用若干塊帶有花紋和沒有花紋的兩種規(guī)格、大小相同的正方形地面磚搭配在一起,按如圖所示的規(guī)律拼成圖案鋪滿長廊,已知每個小正方形地面磚的邊長均為0.6m.

(1)按圖示規(guī)律,第一圖案的長度L1=m;第二個圖案的長度L2=m.
(2)請用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長度Ln之間的關系.
(3)當走廊的長度L為36.6m時,請計算出所需帶有花紋圖案的瓷磚的塊數(shù).

【答案】
(1)1.8;3
(2)解:觀察圖形可得:

第1個圖案中有花紋的地面磚有1塊,

第2個圖案中有花紋的地面磚有2塊,

則第n個圖案中有花紋的地面磚有n塊;

第一個圖案邊長L=3×0.6,第二個圖案邊長L=5×0.6,則第n個圖案邊長為L=(2n+1)×0.6


(3)解:把L=36.6代入L=(2n+1)×0.6中得:

36.6=(2n+1)×0.6,

解得:n=30,

答:需帶有花紋圖案的瓷磚的塊數(shù)是30


【解析】解:(1)第一圖案的長度L1=0.6×3=1.8,第二個圖案的長度L2=0.6×5=3;
故答案為:1.8,3;
(1)觀察題目中的已知圖形,可得前兩個圖案中有花紋的地面磚分別有:1,2個,第二個圖案比第一個圖案多1個有花紋的地面磚,所以可得第n個圖案有花紋的地面磚有n塊;第一個圖案邊長3×0.6=L1 , 第二個圖案邊長5×0.6=L2;(2)由(1)得出則第n個圖案邊長為L=(2n+1)×0.6;(3)根據(jù)(2)中的代數(shù)式,把L為36.6m代入求出n的值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=2x-ax軸的交點是點(-2,0)關于y軸的對稱點,求一元一次不等式2x-a≤0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】洋洋有4張卡片寫著不同的數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,如何抽?最大值是多少?
(2)從中取出2張卡片,使這2張卡片上數(shù)字組成一個最大的數(shù),如何抽。孔畲蟮臄(shù)是多少?
(3)將這4張卡片上的數(shù)字用學過的運算方法,使結果為24.寫出運算式子(一種即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲地的海拔高度是300m,乙地的海拔高度是﹣50m,那么甲地比乙地高m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ABC=90°,AB=BC=,將ABC繞點A逆時針旋轉60°,得到ADE,連接BE,則BE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若△ABC的每條邊長增加各自的10%得△A′B′C′,則∠B′的度數(shù)與其對應角∠B的度數(shù)相比(
A.增加了10%
B.減少了10%
C.增加了(1+10%)
D.沒有改變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC邊上的高,BE平分∠△ABC交AD于點E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=  度;

(2)設∠BAC=α,BCE=β.

①如圖2,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關系?請說明理由;

②當點D在直線BC上移動,則α,β之間有怎樣的數(shù)量關系?請直接寫出你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校科技小組研制了一套信號發(fā)射、接收系統(tǒng).在對系統(tǒng)進行測試中,如圖,小明從路口A處出發(fā),沿東南方向筆直公路行進,并發(fā)射信號,小華同時從A處出發(fā),沿西南方向筆直公路行進,并接收信號.若小明步行速度為39米/分,小華步行速度為52米/分,恰好在出發(fā)后30分時信號開始不清晰.

1)你能求出他們研制的信號收發(fā)系統(tǒng)的信號傳送半徑嗎?(以信號清晰為界限)

2)通過計算,你能找到題中數(shù)據(jù)與勾股數(shù)34、5的聯(lián)系嗎?試從中尋找求解決問的簡便算法.

查看答案和解析>>

同步練習冊答案