如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A,B,點A的坐標為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數(shù)的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當BE=AC時,求CE的長.

(1);(2).

解析試題分析:(1)根據(jù)函數(shù)(x>0)的圖象經(jīng)過點A(1,2),求函數(shù)解析式,再有AC∥y軸,AC=1求出C點坐標,然后根據(jù)CD∥x軸,求D點坐標,從而可求CD長,最后利用三角形面積公式求出△OCD的面積.
(2)通過BE=AC,求得B點坐標,進而求得CE長.
試題解析:解:(1)∵函數(shù)(x>0)的圖象經(jīng)過點A(1,2),
,即k=2.
∵AC∥y軸,AC=1,∴點C的坐標為(1,1).
∵ CD∥x軸,點D在函數(shù)圖像上,∴點D的坐標為(2,1).
.
(2)∵BE=AC,∴BE=.
∵BE⊥CD,∴點B的縱坐標是.∴點B的橫坐標是.
∴CE=.
考點:1.反比例函數(shù)綜合題;3.曲線上點的坐標與方程的關系;3.三角形的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

如圖,在平面直角坐標系中,⊙O的半徑為1,∠BOA=45°,則過A點的雙曲線解析式是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過點P(3,2),與反比例函數(shù)(x>0)的圖象交于點Q(m,n).當一次函數(shù)y的值隨x值的增大而增大時,m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,李老師設計了一個探究杠桿平衡條件的實驗:在一個自制類似天平的儀器的左邊固定托盤A中放置一個重物,在右邊的活動托盤B(可左右移動)中放置一定質量的砝碼,使得儀器左右平衡,改變活動托盤B與點O的距離x(cm),觀察活動托盤B中砝碼的質量y(g)的變化情況.實驗數(shù)據(jù)記錄如下表:

⑴把上表中(x,y)的各組對應值作為點的坐標,在坐標系中描出相應的點,用平滑曲線連接這些點;
⑵觀察所畫的圖象,猜測y與x之間的函數(shù)關系,求出函數(shù)關系式并加以驗證;
⑶當砝碼的質量為24g時,活動托盤B與點O的距離是多少cm?
⑷當活動托盤B往左移動時,應往活動托盤B中添加還是減少砝碼?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點B的對稱點是點E,求過點E的反比例函數(shù)解析式,并寫出第三象限內該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形OABC的頂點A,C分別在x,y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內的圖象經(jīng)過點D,E,且tan∠BOA=.

(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x,y軸正半軸交于點H,G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.

(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數(shù)關系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當m為何值時,以,A,B,D,P為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知反比例函數(shù)在第一象限的圖象如圖所示,點A在其圖象上,點B為軸正半軸上一點,連接AO、AB,且AO=AB,則SAOB=       .

查看答案和解析>>

同步練習冊答案