【題目】某商店準(zhǔn)備銷售甲、乙兩種商品共80件,已知甲種商品進(jìn)貨價(jià)為每件70元,乙種商品進(jìn)貨價(jià)為每件35元,在定價(jià)銷售時(shí),2件甲種商品與3件乙種商品的售價(jià)相同,3件甲種商品比2件乙商品的售價(jià)多150元.
(1)每件甲商品與每件乙商品的售價(jià)分別是多少元?
(2)若甲、乙兩種商品的進(jìn)貨總投入不超過4200元,則至多進(jìn)貨甲商品多少件?
(3)若這批商品全部售完,該商店至少盈利多少元?
【答案】(1)90,60(2)a≤40(3)當(dāng)b=40時(shí),M取得最小值1800元
【解析】
(1)可設(shè)甲種商品的銷售單價(jià)x元,乙種商品的銷售單價(jià)y元,根據(jù)等量關(guān)系:①2件甲種商品與3件乙種商品的銷售收入相同,②3件甲種商品比2件乙種商品的銷售收入多150元,列出方程組求解即可;
(2)可設(shè)銷售甲種商品a萬件,根據(jù)甲、乙兩種商品的銷售總收入不超過4200元,列出不等式求解即可;
(3)設(shè)進(jìn)貨乙商品b件,利潤為M元.可得M與b的關(guān)系式,從而可得結(jié)論.
(1)設(shè)每件甲商品與每件乙商品的售價(jià)分別是x、y元。
解得
(2)設(shè)進(jìn)貨甲商品a件,則乙商品(80-a)件.
70a+35(80-a)≤4200 解得a≤40
(3)設(shè)進(jìn)貨乙商品b件,利潤為M元.
由(2)得a≤40,則b≥40
M=(90-70)(80-b)+(60-35)b=5b+1600
∵5>0
∴M隨b的增大而增大
∴當(dāng)b=40時(shí),M取得最小值5×40+1600=1800元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是中國電信兩種“套餐”計(jì)費(fèi)方式.(月基本費(fèi)固定收,主叫不超過主叫時(shí)間,流量不超上網(wǎng)流量不再收取額外費(fèi)用費(fèi),主叫超時(shí)和上網(wǎng)超流量部分加收超時(shí)費(fèi)和超流量費(fèi))
月基本費(fèi)/元 | 主叫通話/分鐘 | 上網(wǎng)流量/MB | 接聽 | 主叫超時(shí)(元/分鐘) | 超出流量(元/MB) | |
套餐1 | 49 | 200 | 500 | 免費(fèi) | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免費(fèi) | 0.15 | 0.2 |
(1)6月小王主叫通話時(shí)間220分鐘,上網(wǎng)流量800MB.按套餐1計(jì)費(fèi)需 元,按套餐2計(jì)費(fèi)需 元;
若他按套餐2計(jì)費(fèi)需129元,主叫通話時(shí)間為240分鐘,則他上網(wǎng)使用了 MB流量;
(2)若上網(wǎng)流量為540MB,是否存在某主叫通話時(shí)間(分鐘),按套餐1和套餐2的計(jì)費(fèi)相等?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2-1.
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DA⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.試猜想BC與AB有怎樣的位置關(guān)系,并說明其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1) 如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE、CE.若AB=4,求線段EC的長
(2) 如圖2,M為線段AC上一點(diǎn)(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MN與AD交于點(diǎn)G,連接NC、DM,Q為線段NC的中點(diǎn),連接DQ、MQ,判斷DM與DQ的數(shù)量關(guān)系,并證明你的結(jié)論
(3) 在(2)的條件下,若AC=,請你直接寫出DM+CN的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明、小華為了解本校八年級學(xué)生每周上網(wǎng)的時(shí)間,各自進(jìn)行了抽樣調(diào)查.小明調(diào)查了八年級信息技術(shù)興趣小組中40名學(xué)生每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為2.5h;小華從全體320名八年級學(xué)生名單中隨機(jī)抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為1.2h.小明與小華整理各自樣本數(shù)據(jù),如表所示.
時(shí)間段(h/周) | 小明抽樣人數(shù) | 小華抽樣人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請根據(jù)上述信息,回答下列問題:
(1)你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?_____.
估計(jì)該校全體八年級學(xué)生平均每周上網(wǎng)時(shí)間為_____h;
(2)在具有代表性的樣本中,中位數(shù)所在的時(shí)間段是_____h/周;
(3)專家建議每周上網(wǎng)2h以上(含2h)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,根據(jù)具有代表性的樣本估計(jì),該校全體八年級學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時(shí),求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com