【題目】如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點(diǎn)E
(1)求證:△ACE∽△CBE;
(2)若AB=8,設(shè)OE=x(0<x<4),CE2=y,請(qǐng)求出y關(guān)于x的函數(shù)解析式.
【答案】(1)證明:∵AB為圓O的直徑,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵CD⊥AB,
∴∠AEC=∠BEC=90°,
∴∠CAB+∠ACE=90°,
∴∠CBA=∠ACE,
∴△ACE∽△CBE;
(2)解:連接OC,
∵AB=8,∴OC=4,
在Rt△OCE中,OE=x,OC=4,
根據(jù)勾股定理得:CE= ,
∵CE2=y,
∴y=﹣x2+16(0<x<4).
【解析】(1)由AB為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到AC與BC垂直,即三角形ABC為直角三角形,利用直角三角形兩銳角互余得到一對(duì)角互余,再由CD與AB垂直,得到三角形ACE與三角形BCE都為直角三角形,同理得到一對(duì)角互余,等量代換得到一對(duì)角相等,再由一對(duì)直角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似即可得證;
(2)連接OC,由AB垂直于CD,在直角三角形OCE中,由OE=x,OC=4,利用勾股定理表示出CE,代入CE2=y中,即可得到y(tǒng)關(guān)于x的函數(shù)解析式.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中有1個(gè)黑球和若干個(gè)白球,這些球除顏色外其他都相同.已知從中任意摸取一個(gè)球,摸得黑球的概率為 .
(1)求口袋中白球的個(gè)數(shù);
(2)如果先隨機(jī)從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,A,B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a,b表示,且(ab+100)2+|a﹣20|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離.
(2)已知線段OB上有點(diǎn)C且|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù).
(3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,….點(diǎn)P能移動(dòng)到與A或B重合的位置嗎?若都不能,請(qǐng)直接回答.若能,請(qǐng)直接指出,第幾次移動(dòng)與哪一點(diǎn)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的自變量滿足時(shí),函數(shù)值滿足,則該一次函數(shù)解析式為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車(chē),在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車(chē)輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車(chē)超速了嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】讀題畫(huà)圖計(jì)算并作答
畫(huà)線段AB=3 cm,在線段AB上取一點(diǎn)K,使AK=BK,在線段AB的延長(zhǎng)線上取一點(diǎn)C,使AC=3BC,在線段BA的延長(zhǎng)線取一點(diǎn)D,使AD=AB.
(1)求線段BC、DC的長(zhǎng)?
(2)點(diǎn)K是哪些線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程:
(1)7y+6=-9y; (2)2(3y-1)-3(2-4y)=9y+10;
(3) y-=2-; (4)-2+=3(x-1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】沿河岸有A,B,C三個(gè)港口,甲乙兩船同時(shí)分別從AB港口出發(fā),勻速駛向C港,最終到達(dá)C港.設(shè)甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關(guān)系如圖所示.考察下列結(jié)論:
①乙船的速度是25km/h;②從A港到C港全程為120km;③甲船比乙船早1.5小時(shí)到達(dá)終點(diǎn);④若設(shè)圖中兩者相遇的交點(diǎn)為P點(diǎn),P點(diǎn)的坐標(biāo)為(,);⑤如果兩船相距小于10km能夠相互望見(jiàn),那么甲、乙兩船可以相互望見(jiàn)時(shí),x的取值范圍是<x<2.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線 , ,點(diǎn)P為雙曲線 上的一點(diǎn),且PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,PA、PB分別依次交雙曲線 于D、C兩點(diǎn),則△PCD的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com