【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx的圖象經(jīng)過(guò)點(diǎn)A(﹣1,4),交x軸于點(diǎn)B(a,0).
(1)求a與b的值;
(2)如圖1,點(diǎn)M為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出△ABM面積的最大值及此時(shí)點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,點(diǎn)C為AB的中點(diǎn),點(diǎn)P是線段AM上的動(dòng)點(diǎn),如圖2所示,問(wèn)AP為何值時(shí),將△BPC沿邊PC翻折后得到△EPC,使△EPC與△APC重疊部分的面積是△ABP的面積的 .
【答案】
(1)
解:把A(﹣1,4)代入y=x2+bx得到4=1﹣b,
∴b=﹣3,
∴y=x2﹣3x,
∵B(a,0)在函數(shù)圖象上,
∴a2﹣3a=0,
∴a=3或0(舍棄),
∴a=3
(2)
解:如圖1中,作MG∥y軸交AB于G.
設(shè)直線AB解析式為y=kx+b,把(﹣1,4),(3,0)代入得 ,解得 ,
∴y=﹣x+3,設(shè)M(x,x2﹣3x),則G(m,﹣m+3),
∴S△ABM=S△AMG+S△BMG= ×4×[(﹣x+3)﹣(x2﹣3x)=﹣2x2+4x+6=﹣2(x﹣1)2+8,
∵﹣2<0,
∴當(dāng)x=1時(shí),△ABM的面積最大,最大值為8,
此時(shí)M(1,﹣2).
(3)
解:如圖2中,連接AF.
∵C為AB中點(diǎn),△EPC與△APC重疊部分的面積是△ABP的面積的 ,
∴F為AC與EP的中點(diǎn),連接AE,
∴四邊形APCE是平行四邊形,
∴AP=EC=BC= AB=2
【解析】(1)把A(﹣1,4)代入y=x2+bx求出b,再把B(a,0)代入拋物線的解析式即可解決問(wèn)題.(2)如圖1中,作MG∥y軸交AB于G.設(shè)M(x,x2﹣3x),則G(m,﹣m+3),根據(jù)S△ABM=S△AMG+S△BMG構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問(wèn)題.(3)如圖2中,連接AF.只要證明四邊形APCE是平行四邊形,即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)x的函數(shù)y=kx2+2x-1的圖像與x軸僅有一個(gè)交點(diǎn),則實(shí)數(shù)k的值為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,G是 的中點(diǎn),連結(jié)AD,AG,CD,則下列結(jié)論不一定成立的是( )
A.CE=DE
B.∠ADG=∠GAB
C.∠AGD=∠ADC
D.∠GDC=∠BAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近;(精確到0.1)
(2)試估算口袋中白種顏色的球有多少只?
(3)請(qǐng)畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2(m+l)x﹣m+1.以下四個(gè)結(jié)論:
①不論m取何值,圖象始終過(guò)點(diǎn)( ,2 );
②當(dāng)﹣3<m<0時(shí),拋物線與x軸沒(méi)有交點(diǎn):
③當(dāng)x>﹣m﹣2時(shí),y隨x的增大而增大;
④當(dāng)m=﹣ 時(shí),拋物線的頂點(diǎn)達(dá)到最高位置.
請(qǐng)你分別判斷四個(gè)結(jié)論的真假,并給出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點(diǎn)D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長(zhǎng)BA到點(diǎn)E,連接ED、EC,ED交AC于點(diǎn)G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當(dāng)BC是⊙O的直徑時(shí),取DC的中點(diǎn)M,連接AM并延長(zhǎng)交圓于點(diǎn)N,且EG=5,連接CN并求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.
(1)當(dāng)b=1時(shí),l與C相交于A,B兩點(diǎn),其中A為C的頂點(diǎn),B與A關(guān)于原點(diǎn)對(duì)稱,求a的值;
(2)若把直線l向上平移k2+1個(gè)單位長(zhǎng)度得到直線l′,則無(wú)論非零實(shí)數(shù)k取何值,直線l′與拋物線C都只有一個(gè)交點(diǎn).
①求此拋物線的解析式;
②若P是此拋物線上任一點(diǎn),過(guò)P作PQ∥y軸且與直線y=2交于Q點(diǎn),O為原點(diǎn).求證:OP=PQ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com