【題目】在平面直角坐標(biāo)系中,某個(gè)函數(shù)圖象上任意兩點(diǎn)的坐標(biāo)分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.
例如:如圖,當(dāng)t=1時(shí),原函數(shù)y=x,圖象G所對(duì)應(yīng)的函數(shù)關(guān)系式為y=.
(1)當(dāng)t=時(shí),原函數(shù)為y=x+1,圖象G與坐標(biāo)軸的交點(diǎn)坐標(biāo)是 .
(2)當(dāng)t=時(shí),原函數(shù)為y=x2﹣2x
①圖象G所對(duì)應(yīng)的函數(shù)值y隨x的增大而減小時(shí),x的取值范圍是 .
②圖象G所對(duì)應(yīng)的函數(shù)是否有最大值,如果有,請(qǐng)求出最大值;如果沒有,請(qǐng)說明理由.
(3)對(duì)應(yīng)函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).
①n=﹣1時(shí),若圖象G與直線y=2恰好有兩個(gè)交點(diǎn),求t的取值范圍.
②當(dāng)t=2時(shí),若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.
【答案】(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對(duì)應(yīng)的函數(shù)有最大值為;(3)①;②n≤或n≥.
【解析】
(1)根據(jù)題意分別求出翻轉(zhuǎn)之后部分的表達(dá)式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)畫出函數(shù)草圖,求出翻轉(zhuǎn)點(diǎn)和函數(shù)頂點(diǎn)的坐標(biāo),①根據(jù)圖象的增減性可求出y隨x的增大而減小時(shí),x的取值范圍,②根據(jù)圖象很容易計(jì)算出函數(shù)最大值;
(3)①將n=﹣1代入到函數(shù)中求出原函數(shù)的表達(dá)式,計(jì)算y=2時(shí),x的值.據(jù)(2)中的圖象,函數(shù)與y=2恰好有兩個(gè)交點(diǎn)時(shí)t大于右邊交點(diǎn)的橫坐標(biāo)且-t大于左邊交點(diǎn)的橫坐標(biāo),據(jù)此求解.
②畫出函數(shù)草圖,分別計(jì)算函數(shù)左邊的翻轉(zhuǎn)點(diǎn)A,右邊的翻轉(zhuǎn)點(diǎn)C,函數(shù)的頂點(diǎn)B的橫坐標(biāo)(可用含n的代數(shù)式表示),根據(jù)函數(shù)草圖以及題意列出關(guān)于n的不等式求解即可.
(1)當(dāng)x=時(shí),y=,
當(dāng)x≥時(shí),翻折后函數(shù)的表達(dá)式為:y=﹣x+b,將點(diǎn)(,)坐標(biāo)代入上式并解得:
翻折后函數(shù)的表達(dá)式為:y=﹣x+2,
當(dāng)y=0時(shí),x=2,即函數(shù)與x軸交點(diǎn)坐標(biāo)為:(2,0);
同理沿x=﹣翻折后當(dāng)時(shí)函數(shù)的表達(dá)式為:y=﹣x,
函數(shù)與x軸交點(diǎn)坐標(biāo)為:(0,0),因?yàn)?/span>所以舍去.
故答案為:(2,0);
(2)當(dāng)t=時(shí),由函數(shù)為y=x2﹣2x構(gòu)建的新函數(shù)G的圖象,如下圖所示:
點(diǎn)A、B分別是t=﹣、t=的兩個(gè)翻折點(diǎn),點(diǎn)C是拋物線原頂點(diǎn),
則點(diǎn)A、B、C的橫坐標(biāo)分別為﹣、1、,
①函數(shù)值y隨x的增大而減小時(shí),﹣≤x≤1或x≥,
故答案為:﹣≤x≤1或x≥;
②函數(shù)在點(diǎn)A處取得最大值,
x=﹣,y=(﹣)2﹣2×(﹣)=,
答:圖象G所對(duì)應(yīng)的函數(shù)有最大值為;
(3)n=﹣1時(shí),y=x2+2x﹣2,
①參考(2)中的圖象知:
當(dāng)y=2時(shí),y=x2+2x﹣2=2,
解得:x=﹣1±,
若圖象G與直線y=2恰好有兩個(gè)交點(diǎn),則t>﹣1且-t>,
所以;
②函數(shù)的對(duì)稱軸為:x=n,
令y=x2﹣2nx+n2﹣3=0,則x=n±,
當(dāng)t=2時(shí),點(diǎn)A、B、C的橫坐標(biāo)分別為:﹣2,n,2,
當(dāng)x=n在y軸左側(cè)時(shí),(n≤0),
此時(shí)原函數(shù)與x軸的交點(diǎn)坐標(biāo)(n+,0)在x=2的左側(cè),如下圖所示,
則函數(shù)在AB段和點(diǎn)C右側(cè),
故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
解得:n≤;
當(dāng)x=n在y軸右側(cè)時(shí),(n≥0),
同理可得:n≥;
綜上:n≤或n≥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔C的北偏東45方向,距離燈塔100海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東30°方向上的B處,求此時(shí)船距燈塔的距離(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)最美西安,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用為y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為100元/m2.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少費(fèi)用為多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫一個(gè)以線段AC為對(duì)角線、周長為20的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上,并求出BD的長;
(2)在圖2中畫一個(gè)以線段AC為對(duì)角線、面積為10的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,過點(diǎn)C作CE⊥BD交BD于點(diǎn)E,且CE=AB.
(1)求證:△ABD≌△ECB;
(2)若AB=AD,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為 度;
(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)計(jì)劃購買A型和B型課桌凳共200套,經(jīng)招標(biāo),購買一套A型課桌凳比購買一套B型課桌凳少用40元,,且購買4套A型和6套B型課桌凳共需1820元。
(1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?
(2)學(xué)校根據(jù)實(shí)際情況,要求購買這兩種課桌凳總費(fèi)用不能超過40880元,并且購買A型課桌凳的數(shù)量不能超過B型課桌凳的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費(fèi)用最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD長與寬的比為5:3,點(diǎn)E、F分別在邊BC、CD上,tan∠1=,tan∠2=,則cos(∠1+∠2)的值為( 。
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com