【題目】計算。
(1)解方程: +3=
(2)解不等式:2x﹣3≤ (x+2)

【答案】
(1)解:兩邊同時乘以(x﹣3)得

2﹣x+3(x﹣3)=﹣2

解之得:x=

檢驗:當x= 時,x﹣3≠0,

∴x= 是原方程的解


(2)解:兩邊都乘以2,得

2(2x﹣3)≤x+2,

3x≤8,

解得x≤


【解析】(1)根據(jù)等式的性質,可得整式方程,根據(jù)解整式方程,可得答案;(2)根據(jù)不等式的性質,可得不等式的解.
【考點精析】掌握去分母法和一元一次不等式的解法是解答本題的根本,需要知道先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,點C在⊙O外,OC⊥OA,并交AB于點P,且CP=CB.
(1)判斷CB與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為3,OP=1,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,四邊形ABCD的四個頂點的坐標分別為A(0,0)、B(9,0)、C(7,5)、D(2,7).

(1)試計算四邊形ABCD的面積;

(2)若將該四邊形各頂點的橫坐標都加2,縱坐標都加3,其面積怎么變化?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的奇數(shù)1,3,5,7,9,……,排成如圖所示的數(shù)陣.

(1)十字框中五個數(shù)的和與中間數(shù)15有什么關系?

(2)設中間數(shù)為a,用式子表示十字框中五個數(shù)的和;

(3)若將十字框上下左右移動,可框住另外五個數(shù),這五個數(shù)的和還有種規(guī)律嗎?

(4)十字框中五個數(shù)之和能等于2010嗎?若能,請寫出這五個數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點EAC的延長線上,有下列條件∠1=2,②∠3=4,③∠A=DCE,④∠D=DCE,⑤∠A+ABD=180°,⑥∠A+ACD=180°,其中能判斷ABCD的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是(  )

A. 2, B. 4,3 C. 4, D. 2,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚敬老愛老傳統(tǒng)美德,某校八年級(1)班的學生要去距離學校10km的敬老院看望老人,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果乘汽車的同學早到10min.已知汽車的速度是騎車學生的4倍,求騎車學生的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化妝品店老板到廠家選購AB兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

A、B兩種品牌的化妝品每套進價分別為多少元?

若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

同步練習冊答案