【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,AD=5,求OC的值.
【答案】(1)證明見解析;(2).
【解析】
試題(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應邊成比例,求得AD:OC的值.
試題解析:(1)連結DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB. 3分
又∵CO=CO, OD=OB
∴△COD≌△COB(SAS) 4分
∴∠CDO=∠CBO=90°.
又∵點D在⊙O上,
∴CD是⊙O的切線.
(2)∵△COD≌△COB.
∴CD=CB.
∵DE=2BC,
∴ED=2CD.
∵AD∥OC,
∴△EDA∽△ECO.
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】若△ABC的三邊分別為a,b,c,其中a,b滿足+(b﹣8)2=0.
(1)求邊長c的取值范圍,
(2)若△ABC是直角三角形,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長_________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.
(1)求證:四邊形DEBF是菱形;
(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為 ,并在圖上標出此時點P的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米.兩車行駛的時間為x小時,y1、y2關于x的函數(shù)圖象如圖所示:
(1)根據(jù)圖象,直接寫出y1,y2關于x的函數(shù)關系式;
(2)當x為何值時,兩車相遇?
(3)甲、乙兩地間有A、B兩個加油站,相距280千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)設點M(3,n),求使MN+MD取最小值時n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,對角線BD被AC平分,那么再加上下述中的條件( ) 可以得到結論: “四邊形ABCD是平行四邊形”.
A.AB=CD B.∠BAD=∠BCDC.∠ABC=∠ADC D.AC= BD
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com