【題目】如圖,在矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P以每秒一個(gè)單位的速度從點(diǎn)A出發(fā),沿對(duì)角線AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)C出發(fā),沿邊CB向點(diǎn)B移動(dòng).設(shè)P,Q兩點(diǎn)移動(dòng)時(shí)間為t秒(0≤t≤4).
(1)用含t的代數(shù)式表示線段PC的長是 ;
(2)當(dāng)△PCQ為等腰三角形時(shí),求t的值;
(3)以BQ為直徑的圓交PQ于點(diǎn)M,當(dāng)M為PQ的中點(diǎn)時(shí),求t的值.
【答案】(1)5﹣t;(2)當(dāng)t=或t=或t=時(shí),△PCQ為等腰三角形;(3)當(dāng)M為PQ的中點(diǎn)時(shí),t的值為.
【解析】試題分析:(1)根據(jù)勾股定理求出AC,根據(jù)題意用t表示出AP,結(jié)合圖形計(jì)算即可;
(2)分CP=CQ、QP=QC、PQ=PC三種情況,根據(jù)等腰三角形的性質(zhì)和相似三角形的判定和性質(zhì)計(jì)算即可;
(3)連接BP、BM,根據(jù)直徑所對(duì)的圓周角是直角、等腰三角形的三線合一得到BP=BQ,根據(jù)勾股定理用t表示出BP、BQ,列出方程,解方程即可.
解:(1)∵∠B=90°,AB=3,BC=4,
∴AC=5,
∵點(diǎn)P的速度是每秒一個(gè)單位,移動(dòng)時(shí)間為t秒,
∴AP=t,
則PC=AC﹣AP=5﹣t,
故答案為:5﹣t;
(2)當(dāng)CP=CQ時(shí),t=5﹣t,
解得t=,
當(dāng)QP=QC時(shí),過點(diǎn)Q作QH⊥AC于H,如圖1,
則PH=HC=PC=(5﹣t),QC=t,
∵QH⊥AC,∠B=90°,
∴△CHQ∽△CBA,
∴=,即=,
解得t=,
當(dāng)PQ=PC時(shí),如圖2,
過點(diǎn)P作PN⊥QC于N,
則NC=NQ=QC=t,
∵△CPN∽△CAB,得
=,即=,
解得t=,
綜上所述,當(dāng)t=或t=或t=時(shí),△PCQ為等腰三角形;
(3)連接BP、BM,如圖3,則∠BMQ=90°,
∵M(jìn)為PQ的中點(diǎn),
∴BP=BQ,
過點(diǎn)P作PK⊥AB于K,
∵AP=t,
∴PK=t,AK=t,
∴BK=3﹣t,
在Rt△BPK中,PB2=PK2+BK2=(3﹣t)2+(t)2,又BQ=4﹣t,
∴(4﹣t)2=(3﹣t)2+(t)2,
解得t=.
∴以BQ為直徑的圓交PQ于點(diǎn)M,當(dāng)M為PQ的中點(diǎn)時(shí),t的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:①同位角相等,兩直線平行;②全等三角形的周長相等;③直角都相等;④等邊對(duì)等角.其中逆命題是真命題的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,過點(diǎn)C作CE∥AD交AB于E,連接AC、DE,AC與DE交于點(diǎn)F.
(1)求證:四邊形AECD為平行四邊形;
(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線BD上的點(diǎn),∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列軸對(duì)稱圖形中,對(duì)稱軸條數(shù)最多的是 ( )
A. 線段 B. 等邊三角形 C. 正方形 D. 圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,該拋物線頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)H.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P在x軸下方的拋物線上,當(dāng)∠ABP=∠CDB時(shí),求出點(diǎn)P的坐標(biāo);
(3)以O(shè)B為邊最第四象限內(nèi)作等邊△OBM.設(shè)點(diǎn)E為x軸的正半軸上一動(dòng)點(diǎn)(OE>OH),連接ME,把線段ME繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得MF,求線段DF的長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)圖形成軸對(duì)稱那么這兩個(gè)圖形一定是全等圖形而兩個(gè)全等圖形_______成軸對(duì)稱(填“一定”“一定不”或“不一定”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC與BD相交于O點(diǎn),且AB=OA=2cm,則BD的長為 cm,BC的長為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2010年3月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是( 。
A. 32,31 B. 31,32 C. 31,31 D. 32,35
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com