【題目】某工廠修建了甲、乙兩個水池,最大蓄水量都是1200立方米,如果甲池有水480立方米,乙池蓄滿水,甲池每小時進水80立方米,乙池每小時放水100立方米.

1)分別寫出甲、乙兩池的水量與時間的函數(shù)解析式;

2)甲、乙兩池同時進水、放水,經(jīng)過幾小時兩個水池內(nèi)的水一樣多?

【答案】1,;(24小時

【解析】

1)根據(jù)甲池中的水量=原水量+t小時的進水量,即可求出甲池的水量與時間的函數(shù)解析式;然后根據(jù)乙池中的水量=原水量-t小時的放水量,即可求出乙池的水量與時間的函數(shù)解析式;

2)令=,求出x的值即可.

解:(1)由題意可知:

;

2)令=

解得:

答:甲、乙兩池同時進水、放水,經(jīng)過4小時兩個水池內(nèi)的水一樣多.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(D不與B、C重合),以AD為邊作等邊△ADE(頂點A、D、E按逆時針方向排列),連接CE

(1)如圖1,當點D在邊BC上時,求證:①BDCE,②ACCE+CD;

(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結論ACCE+CD是否成立?若不成立,請寫出AC、CE、CD之間存在的數(shù)量關系,并說明理由;

(3)如圖3,當點D在邊BC的反向延長線上且其他條件不變時,補全圖形,并直接寫出AC、CE、CD之間存在的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi),已點A30)、B(-5,3),將點A向左平移6個單位到達C,將點B向下平移6個單位到達D

1)寫出C點、D點的坐標C __________,D ____________ ;

2)把這些點按ABCDA順次連接起來這個圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,為銳角.點為射線上一動點,連接,以為一邊且在的右側作正方形

解答下列問題:

如果

①當點在線段上時(與點不重合),如圖2,線段、之間的位置關系為________,數(shù)量關系為________.

②當點在線段的延長線上時,如圖3,①中的結論是否仍然成立,為什么?

如果,,點在線段上運動.試探究:當滿足一個什么條件時,(點、重合除外)?畫出相應圖形,并說明理由.(畫圖不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地同時出發(fā),沿同一條公路相向而行,相遇時甲、乙所走路程的比為,甲、乙兩車離AB中點C的路程千米與甲車出發(fā)時間的關系圖象如圖所示,則下列說法錯誤的是(

A.A,B兩地之間的距離為180千米

B.乙車的速度為36千米

C.a的值為

D.當乙車到達終點時,甲車距離終點還有30千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副三角板的兩個直角重疊在一起,∠A=30°,∠C=45°,△COD固定不動,△AOB繞著O點逆時針旋轉α°(0°<α<180° ),使兩個三角形至少有一組邊所在直線垂直,則α=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個長為2,寬為1的矩形ABCD和矩形EFGH如圖1所示擺放在直線l上,DE=2,將矩形ABCD繞點D順時針旋轉α角(0°<α<90°),將矩形EFGH繞點E逆時針旋轉相同的角度.在旋轉的過程中,利用圖2思考:當矩形ABCD和矩形EFGH重合部分為正方形時,α=_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,BC=3,AB=4,,E為線段BC上任意一點,連接AE并延長與DC交于點G,若BE=2EC,則AE的邊長為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案