【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,DBC邊上一點(diǎn),(不與點(diǎn)BC)重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°,DBC邊上一點(diǎn)(不與點(diǎn)BC重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請(qǐng)寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,在Rt△DBC中,DB=3DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請(qǐng)直接寫出線段AD的長度.

【答案】(1)60°AC=DC+EC(2)∠ACE=45°,BD2+CD2=2AD2,詳見解析(3)AD=AD=

【解析】

1)證明BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;

2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=B,得到∠DCE=90°,根據(jù)勾股定理計(jì)算即可;

3)如圖3,作AECDE,連接AD,根據(jù)勾股定理得到BC==,推出點(diǎn)B,CA,D四點(diǎn)共圓,根據(jù)圓周角定理得到∠ADE=45°,求得ADE是等腰直角三角形,得到AE=DE,根據(jù)勾股定理即可得到結(jié)論.

(1)∵在ABC中,AB=AC,∠BAC=60°,

∴∠BAC=DAE=60°

∴∠BAC-DAC=DAE-DAC,即∠BAD=CAE,

BADCAE中,,

∴△BAD≌△CAE(SAS)

∴∠ACE=B=60°,BD=CE

BC=BD+CD=EC+CD,

AC=BC=EC+CD;

故答案為:60°AC=DC+EC;

(2)BD2+CD2=2AD2

理由如下:由(1)得,BAD≌△CAE,∴BD=CE,∠ACE=B=45°,

∴∠DCE=90°

CE2+CD2=ED2,

RtADE中,AD2+AE2=ED2,又AD=AE,

BD2+CD2=2AD2;

(3)如圖3,作AECDE,連接AD,


∵在RtDBC中,DB=3,DC=5,∠BDC=90°,

BC=,

∵∠BAC=90°AB=AC,

AB=AC=,∠ABC=ACB=45°

∵∠BDC=BAC=90°,

∴點(diǎn)B,C,A,D四點(diǎn)共圓,

∴∠ADE=45°,

∴△ADE是等腰直角三角形,

AE=DE,

CE=5DE,

AE2+CE2=AC2

AE2+(5AE)2=17,

AE=1,AE=4

AD=AD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店從機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件每件的進(jìn)價(jià)是乙種零件每件進(jìn)價(jià)的,用1600元單獨(dú)購進(jìn)一種零件時(shí),購進(jìn)甲種零件的數(shù)量比乙種零件的數(shù)量多4.

(1)求每件甲種零件和每件乙種零件的進(jìn)價(jià)分別為多少元?

(2)若該商店計(jì)劃購進(jìn)甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價(jià)是每件100元,乙種零件的批發(fā)價(jià)是每件130元,該商店計(jì)劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進(jìn)多少件甲種零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)

1)求m、b的值;

2)點(diǎn)B在反比例函數(shù)的圖象上,且點(diǎn)B的橫坐標(biāo)為1.若在直線l上存在一點(diǎn)P(點(diǎn)P不與點(diǎn)A重合),使得,結(jié)合圖象直接寫出點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,ACO的切線,切點(diǎn)為ABCO于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)求證:直線DEO的切線;

2)若O半徑為1,BC4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段OA與線段OA關(guān)于直線lyx對(duì)稱.已知點(diǎn)A的坐標(biāo)為(2,1),則點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 RtABC 中,∠ACB90°,BE 平分∠ABCD 是邊 AB 上一點(diǎn),以 BD為直徑的⊙O 經(jīng)過點(diǎn) E,且交 BC 于點(diǎn) F

1)求證:AC 是⊙O 的切線;

2)若 BC8,⊙O 的半徑為 5,求 CE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形的對(duì)角線交點(diǎn),點(diǎn)分別為邊的中點(diǎn).有下列四個(gè)推斷,

①對(duì)于任意四邊形,四邊形都是平行四邊形;

②若四邊形是平行四邊形,則交于點(diǎn);

③若四邊形是矩形,則四邊形也是矩形;

④若四邊形是正方形,則四邊形也一定是正方形.

所有正確推斷的序號(hào)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)D,E分別在AC,BC上,CD=4 x,CE=3x,其中0<x<3.

(1)求證:DE∥AB;

(2)當(dāng)x=1時(shí) ,求點(diǎn)E到AB的距離;

(3) 將△DCE繞點(diǎn)E逆時(shí)針方向旋轉(zhuǎn),使得點(diǎn)D落在AB邊上的D′處. 在旋轉(zhuǎn)的過程中,若點(diǎn)D′的位置有且只有一個(gè),求x的取值范圍.

圖1 備用圖1 備用圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:

(1)A型自行車去年每輛售價(jià)多少元?

(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案