【題目】已知:如圖,點(diǎn)C在∠AOB的一邊OA上,過(guò)點(diǎn)C的直線DE∥OB,CF平分∠ACD,CG⊥CF于點(diǎn)C.
(1)若∠O=40°,求∠ECF的度數(shù);
(2)求證:CG平分∠OCD.
【答案】(1)∠ECF=110°;(2)證明見解析.
【解析】
(1)根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),可以求得∠ECF的度數(shù);
(2)根據(jù)角平分線的性質(zhì)、平角的定義可以求得∠OCG和∠DCG的關(guān)系,從而可以證明結(jié)論成立.
(1)∵直線DE∥OB,CF平分∠ACD,∠O=40°,
∴∠ACE=∠O,∠ACF=∠FCD,
∴∠ACE=40°,
∴∠ACD=140°,
∴∠ACF=70°,
∴∠ECF=∠ECA+∠ACF=40°+70°=110°;
(2)證明:∵CF平分∠ACD,CG⊥CF,∠ACD+∠OCD=180°,
∴∠ACF=∠FCD,∠FCG=90°,
∴∠FCD+∠DCG=90°,∠ACF+∠OCG=90°,
∴∠DCG=∠OCG,
∴CG平分∠OCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(發(fā)現(xiàn)問(wèn)題)愛好數(shù)學(xué)的小強(qiáng)在做作業(yè)時(shí)碰到這樣的一道題目:如圖①,在△ABC中,AB=8,AC=6,E為BC中點(diǎn),求AE的取值范圍.
(解決問(wèn)題)
(1)小強(qiáng)經(jīng)過(guò)多次的嘗試與探索,終于得到解題思路:在圖①中,作AB邊上的中點(diǎn)F,連接EF,構(gòu)造出△ABC的中位線EF,請(qǐng)你完成余下的求解過(guò)程.
(靈活運(yùn)用)
(2)如圖②,在四邊形ABCD中,AB=8,CD=6,E、F分別為BC、AD中點(diǎn),求EF的取值范圍.
(3)變式:把圖②中的A、D、C變成在一直線上時(shí),如圖③,其它條件不變,則EF的取值范圍為 .
(遷移拓展)
(4)如圖④,在△ABC中,∠A=60°,AB=4,E為BC邊的中點(diǎn),F是AC邊上一點(diǎn)且EF正好平分△ABC的周長(zhǎng),則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價(jià)是8元/件,年銷售量為5萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬(wàn)元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足我們學(xué)過(guò)的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:
x(萬(wàn)元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(2)如果把利潤(rùn)看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)W(萬(wàn)元)與廣告費(fèi)用x(萬(wàn)元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬(wàn)元時(shí)所獲得的利潤(rùn)最大?
(3)如果公司希望年利潤(rùn)W(萬(wàn)元)不低于14萬(wàn)元,請(qǐng)你幫公司確定廣告費(fèi)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)O點(diǎn)作射線OC,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為______度;
(2)在(1)旋轉(zhuǎn)過(guò)程中,當(dāng)旋轉(zhuǎn)至圖3的位置時(shí),使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是BC的中點(diǎn),CE⊥AD,垂足為點(diǎn)E,BF∥AC交CE的延長(zhǎng)線于點(diǎn)F.
求證:AC=2BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句中正確的有( )
①經(jīng)過(guò)一點(diǎn),有且只有一條直線與已知直線平行;②有公共頂點(diǎn)且和為的兩個(gè)角是鄰補(bǔ)角;③兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ);④不相交的兩條直線叫做平行線;⑤直線外的一點(diǎn)到已知直線的垂線段叫做點(diǎn)到直線的距離;
A.0個(gè);B.1個(gè);C.2個(gè);D.3個(gè);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BE∥AO,
解:因?yàn)?/span>BE∥AO.(已知)
所以
因?yàn)?/span>,(已知 )
所以 .(等量代換)
.(等式性質(zhì))
因?yàn)?/span> ,(已求)
所以 .(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)對(duì)角線BD的中點(diǎn)O作直線EF,分別交DA的延長(zhǎng)線,AB, DC,BC的延長(zhǎng)線于點(diǎn)E,M,N,F.
(1)求證:△ODE≌△OBF;
(2)除(1)中這對(duì)全等三角形外,再寫出兩對(duì)全等三角形(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖)點(diǎn)O為坐標(biāo)系的原點(diǎn)。
(1)求點(diǎn)B的坐標(biāo)。
(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過(guò)點(diǎn)0),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過(guò)點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過(guò)程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍。
(3)如圖2,E為x軸負(fù)半軸上一點(diǎn),且,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系并說(shuō)明理由。
(注:三角形三個(gè)內(nèi)角的和等于)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com