【題目】如圖,在平行四邊形ABCD中,PAB邊上的任意一點,過P點作PEAB,交ADE,連結(jié)CECP.已知A=60o

(1)試探究,當CPE≌△CPB時,CDDE的數(shù)量關(guān)系;

(2)若BC=4AB=3,當AP的長為多少時,CPE的面積最大,并求出面積的最大值.

【答案】1DE=DC;(2AP=;△CPE的面積最大,值為

【解析】

1)由△CPE≌△CPB,根據(jù)全等三角形的對應邊相等,對應角相等可得BC=CE,∠B=PEC=120°,進而得出∠ECD=CE D,再利用等角對等邊得到ED=CD

2)延長PECD的延長線于F,設AP=x,OCPE的面積為y,由四邊形ABCD為平行四邊形可得AB=DC,AD=BC;在直角三角形APE中,可得∠PEA=30°;再利用直角三角形的性質(zhì)表示出AEPE;再由DE =AD-AE,再根據(jù)對頂角相等可得∠DEF=30°,利用直角三角形的性質(zhì)可以表示出DF,進一步說明∠F=90°,再表示出三角形CPE的面積,得到yx的函數(shù)解析式,最后利用二次函數(shù)的性質(zhì)即可確定三角形CPE面積的最大值和AP的長.

1)當△CPE≌△CPB時,有BC=CE,∠B=PEC=120°,

∴∠CED=180°-AEP-PEC=30°,

∵∠ADC=120°,

∴∠ECD=CED=180°-120°-30°=30°,

DE=CD

2)延長PECD的延長線于F,設AP=x,△CPE的面積為y

∵四邊形ABCD為平行四邊形,

DC = AB =3,AD=BC=4,

RtAPE,∠A=60°,

∴∠PEA=30°。

AE=2x,PE=x,

RtDEF中,∠DEF=PEA=30°,DE=AD-AE=4-2x,

DF=DE=2-x,

AB//CD.PFAB,

PFCD,

= PE·CF,即y=,

配方得:y= x0x3),,

∴當x=,CPE的面積有最大值為,即AP的長為時,OCPE的面積最大,最大面積是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點,分別在軸、軸上,對角線軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點,若點,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中,裝有2個白球,1個紅球,1個黃球,這些球除顏色外都相同.

求下列事件的概率:

(1)攪勻后從中任意摸出1個球,恰好是白球;

(2)攪勻后從中任意摸出2個球,2個都是白球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊長方形紙片ABCD,先折出折痕(對角線)BD,再折疊使AD邊與BD重合,得折痕DG,若AB8BC6,則AG的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC 的三個頂點的坐標分別 A(-3,4)B(-5,2)C(-2,1)

(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;

(2)畫出將△ABC 繞原點 O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2

(3)求(2)中線段 OA掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸交于A、B兩點,交y軸于點C,AB4,對稱軸是直線x=﹣1

1)求拋物線的解析式及點C的坐標;

2)連接ACE是線段OC上一點,點E關(guān)于直線x=﹣1的對稱點F正好落在AC上,求點F的坐標;

3)動點M從點O出發(fā),以每秒2個單位長度的速度向點A運動,到達點A即停止運動,過點Mx軸的垂線交拋物線于點N,交線段AC于點Q.設運動時間為tt0)秒.

①連接BC,若BOCAMN相似,請直接寫出t的值;

②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點,

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明乘坐一艘游船出海游玩,游船上的雷達掃描探測得到的結(jié)果如圖所示,每相鄰兩個圓之間距離是1km(小圓半徑是1km),若小艇C在游船的正南方2km,則下列關(guān)于小艇A、B的位置描述,正確的是( 。

A.小艇A在游船的北偏東60°,且距游船3km

B.游船在的小艇A北偏東60°,且距游船3km

C.小艇B在游船的北偏西30°,且距游船2km

D.小艇B在小艇C的北偏西30°,且距游船2km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+2ax-3x軸交于AB(1,0)兩點(A在點B的左側(cè)),與y軸交于點C,將拋物線沿y軸平移m(m0)個單位,當平移后的拋物線與線段OA有且只有一個交點時,則m的取值范圍是_______________

查看答案和解析>>

同步練習冊答案