如圖,已知在△ABC中,AD是BC邊上的中線,以AB為直徑的⊙O交BC于點D,過D作MN⊥AC于點M,交AB的延長線于點N,過點B作BG⊥MN于G.
(1)求證:△BGD∽△DMA;
(2)求證:直線MN是⊙O的切線.
科目:初中數(shù)學 來源: 題型:
實數(shù)a,b,c在數(shù)軸上對應的點如下圖所示,則下列式子中正確的是
A.a(chǎn)c > bc B.|a–b| = a–b
C.–a <–b < c D.–a–c >–b–c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖8,已知拋物線y= x2- x-3與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C。
(1)直接寫出A、D、C三點的坐標;
(2)在拋物線的對稱軸上找一點M,使得MD+MC的值最小,并求出點M的坐標;
(3)設(shè)點C關(guān)于拋物線對稱的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,△ABC三個頂點坐標分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1.
(2)將△A1B1C1的三個頂點的橫坐標與縱坐標同時乘以﹣2,得到對應的點A2,B2,C2,請畫出△A2B2C2.
(3)求△A1B1C1與△A2B2C2的面積比,即:= (不寫解答過程,直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在△ABC和△A1B1C1中,下列四個命題:
(1)若AB=A1B1,AC=A1C1,∠A=∠A1,則△ABC≌△A1B1C1;
(2)若AB=A1B1,AC=A1C1,∠B=∠B1,則△ABC≌△A1B1C1;
(3)若∠A=∠A1,∠C=∠C1,則△ABC∽△A1B1C1;
(4)若AC:A1C1=CB:C1B1,∠C=∠C1,則△ABC∽△A1B1C1.
其中真命題的個數(shù)為( )
A.4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點F是AE的中點,F(xiàn)D與AB相交于點M.
(1)求證:∠FMC=∠FCM;
(2)AD與MC垂直嗎?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com