【題目】《人民日報》點贊湖北宜昌智慧停車平臺.作為全國智慧城市試點,我市通過互聯(lián)網(wǎng)、大數(shù)據(jù)等新科技,打造智慧停車平臺,著力化解城市停車難問題.市內(nèi)某智慧公共停車場的收費標準是:停車不超過分鐘,不收費;超過分鐘,不超過分鐘,計小時,收費元;超過小時后,超過小時的部分按每小時元收費(不足小時,按小時計).

1)填空:若市民張先生某次在該停車場停車小時分鐘,應(yīng)交停車費________元.若李先生也在該停、車場停車,支付停車費元,則停車場按________小時(填整數(shù))計時收費.

2)當取整數(shù)且時,求該停車場停車費(單位:元)關(guān)于停車計時(單位:小時)的函數(shù)解析式.

【答案】1; 2

【解析】

1)根據(jù)題意可知,停車小時分鐘,則超出設(shè)計以小時計算;支付停車費元,則超出時間為(小時),所以停車場按小時計時收費;

2)根據(jù)題意即可得出停車場停車費(單位:元)關(guān)于停車計時(單位:小時)的函數(shù)解析式.

1)若市民張先生某次在該停車場停車小時分鐘,應(yīng)交停車費為:(元);若李先生也在該停車場停車,支付停車費元,則超出時間為(小時),所以停車場按小時計時收費.

故答案為:;;

2)當取整數(shù)且時,該停車場停車費(單位:元)關(guān)于停車計時(單位:小時)的函數(shù)解析式為:,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)△ABC和△CDE是兩個等腰直角三角形,如圖1,其中∠ACB=∠DCE90°,連結(jié)AD、BE,求證:△ACD≌△BCE

2)△ABC和△CDE是兩個含30°的直角三角形,其中∠ACB=∠DCE90°,∠CAB=∠CDE30°,CDAC,△CDE從邊CDAC重合開始繞點C逆時針旋轉(zhuǎn)一定角度α0°<α180°);

①如圖2,DEBC交于點F,與AB交于點G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;

②若AB10DE8,連結(jié)BD、BE,當以點BD、E為頂點的三角形是直角三角形時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc0;②9a+3b+c0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0a0)有一個根為,其中正確結(jié)論的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)yax+b和反比例函數(shù)y在同一直角坐標系中的大致圖象是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接ACDF

1)判斷四邊形ACDF的形狀;

2)當BC=2CD時,求證:CF平分∠BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點 ,與軸交于另一點,頂點為

1)求拋物線的解析式,并寫出點的坐標;

2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;

3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,AD2AB,點E在直線AD上,連接BE,CE,若BEAD,則∠BEC的大小為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB=2,DAB的延長線上,DCO相切于點C,連接AC.若∠A=30°,CD長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天水市某中學(xué)為了解學(xué)校藝術(shù)社團活動的開展情況,在全校范圍內(nèi)隨機抽取了部分學(xué)生,在“舞蹈、樂器、聲樂、戲曲、其它活動”項目中,圍繞你最喜歡哪一項活動(每人只限一項)進行了問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖解答下列問題:

(1)在這次調(diào)查中,一共抽查了   名學(xué)生.

(2)請你補全條形統(tǒng)計圖.

(3)扇形統(tǒng)計圖中喜歡“樂器”部分扇形的圓心角為   度.

(4)請根據(jù)樣本數(shù)據(jù),估計該校1200名學(xué)生中喜歡“舞蹈”項目的共多少名學(xué)生?

查看答案和解析>>

同步練習冊答案