【題目】建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過(guò)點(diǎn)B,過(guò)A作AD⊥ED于D,過(guò)C作CE⊥ED于E.則易證△ADB≌△BEC.這個(gè)模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標(biāo)系中被大量使用.
模型應(yīng)用:
(1)如圖2,點(diǎn)A(0,4),點(diǎn)B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點(diǎn)C在第一象限,求點(diǎn)C的坐標(biāo);
②若AB為直角邊,求點(diǎn)C的坐標(biāo);
(2)如圖3,長(zhǎng)方形MFNO,O為坐標(biāo)原點(diǎn),F的坐標(biāo)為(8,6),M、N分別在坐標(biāo)軸上,P是線段NF上動(dòng)點(diǎn),設(shè)PN=n,已知點(diǎn)G在第一象限,且是直線y=2x一6上的一點(diǎn),若△MPG是以G為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo).
【答案】(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.
【解析】
(1)①過(guò)C作CD垂直于x軸構(gòu)造“一線三垂直”,再根據(jù)全等三角形的性質(zhì)求解即可;②點(diǎn)C有四處,分別作出圖形,根據(jù)“一線三垂直”或?qū)ΨQ求解即可;(2)當(dāng)點(diǎn)G為直角頂點(diǎn)時(shí),分點(diǎn)G在矩形MFNO的內(nèi)部與外部?jī)煞N情況構(gòu)造“一線三垂直”求解即可.
(1)①如圖,過(guò)C作CD垂直于x軸,
根據(jù)“一線三垂直”可得△AOB≌△BDC,∴AO=BD,OB=CD,
∵點(diǎn)A(0,4),點(diǎn)B(3,0),∴AO=4,OB=3 ,
∴OD=3+4=7,
∴點(diǎn)C的坐標(biāo)為(7,3);
②如圖,若AB為直角邊,點(diǎn)C的位置可有4處,
a、若點(diǎn)C在①的位置處,則點(diǎn)C的坐標(biāo)為(7,3);
b、若點(diǎn)C在的位置處,同理可得,則點(diǎn)的坐標(biāo)為(4,7);
c、若點(diǎn)C在的位置處,則、關(guān)于點(diǎn)A對(duì)稱,
∵點(diǎn)A(0,4),點(diǎn)(4,7),∴點(diǎn)的坐標(biāo)為(-4,1);
d、若點(diǎn)C在的位置處,則、C關(guān)于點(diǎn)B對(duì)稱,
∵點(diǎn)B(3,0),點(diǎn)C(7,3),∴點(diǎn)的坐標(biāo)為(-1,-3);
綜上,點(diǎn)C的坐標(biāo)為(7,3)、(4,7)、(-4,1)、(-1,-3);
(2)當(dāng)點(diǎn)G位于直線y=2x-6上時(shí),分兩種情況:
①當(dāng)點(diǎn)G在矩形MFNO的內(nèi)部時(shí),如圖,過(guò)G作x軸的平行線AB,交y軸于A,交直線NF于點(diǎn)B,設(shè)G(x,2x-6);
則OA=2x-6,AM=6-(2x-6)=12-2x,BG=AB-AG=8-x;
則△MAG≌△GBP,得AM =BG,
即:12-2x=8-x,解得x=4,
∴G(4,2);
當(dāng)點(diǎn)G在矩形MFNO的外部時(shí),如圖,過(guò)G作x軸的平行線AB,交y軸于A,交直線NF的延長(zhǎng)線于點(diǎn)B,設(shè)G(x,2x-6);
則OA=2x-6,AM=(2x-6)-6=2x-12,BG=AB-AG=8-x;
則△MAG≌△GBP,得AM =BG,
即:2x-12=8-x,解得,
∴G ;
綜上,G點(diǎn)的坐標(biāo)為(4,2)、.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, △ABC是等邊三角形,D是BC延長(zhǎng)線上任意一點(diǎn),以AD為一邊向右側(cè)作等邊△ADE,連接CE.
1.求證:△CAE≌△BAD;
2.判斷直線AB與EC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把長(zhǎng)方形紙片ABCD折疊,使頂點(diǎn)A與頂點(diǎn)C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長(zhǎng)的正方形面積( 。
A. 11 B. 10 C. 9 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過(guò)點(diǎn)(2,3),對(duì)稱軸為直線x =1.
(1)求拋物線的表達(dá)式;
(2)如果垂直于y軸的直線l與拋物線交于兩點(diǎn)A(, ),B(, ),其中, ,與y軸交于點(diǎn)C,求BCAC的值;
(3)將拋物線向上或向下平移,使新拋物線的頂點(diǎn)落在x軸上,原拋物線上一點(diǎn)P平移后對(duì)應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BDDF,連接CF、BE.
(1)求證:DBDE;
(2)求證:直線CF為⊙O的切線;
(3)若CF4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠AOB=30°點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD外一點(diǎn),連接AE、BE和DE,過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=3.下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③點(diǎn)B到直線AE的距離為;④S正方形ABCD=8+.則正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com