【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= ,則線段CE的最大值為 .
【答案】6.4
【解析】解:作AG⊥BC于G,如圖,
∵AB=AC,
∴BG=CG,
∵∠ADE=∠B=α,
∴cosB=cosα= = ,
∴BG= ×10=8,
∴BC=2BG=16,
設BD=x,則CD=16﹣x,
∵∠ADC=∠B+∠BAD,即α+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
而∠B=∠C,
∴△ABD∽△DCE,
∴ = ,即 = ,
∴CE=﹣ x2+ x
=﹣ (x﹣8)2+6.4,
當x=8時,CE最大,最大值為6.4.
作AG⊥BC于G,如圖,根據(jù)等腰三角形的性質得BG=CG,再利用余弦的定義計算出BG=8,則BC=2BG=16,設BD=x,則CD=16﹣x,證明△ABD∽△DCE,利用相似比可表示出CE=﹣ x2+ x,然后利用二次函數(shù)的性質求CE的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點,連接BD,使∠A=2∠1,點E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把正方體的6個面分別涂上不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況如下表:
顏色 | 紅 | 黃 | 藍 | 白 | 紫 | 綠 |
花朵數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個正方體拼成一個在同一平面上放置的長方體,如圖所示,那么長方體的下底面共有_____朵花.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉,第一次翻轉到位置①,第二次翻轉到位置②…依此規(guī)律,第15次翻轉后點C的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學校出發(fā)到某圖書館查閱資料,學校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學校的速度為 千米/分鐘.
(2)請你求出小明離開學校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達式;
(3)若設兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長為 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為 ;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內(nèi),若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+3的圖像分別與x軸、y軸交于A、B兩點.動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的速度分別為1,,2 (長度單位/秒);動點E從O點開始以(長度單位/秒)的速度沿線段OB運動.設P、E兩點同時出發(fā),運動時間為t (秒),當點P沿折線AO-OB-BA運動一周時,動點E和P同時停止運動.過點E作EF∥OA,交AB于點F.
(1)求線段AB的長;
(2)求證:∠ABO=30°;
(3)當t為何值時,點P與點E重合?
(4)當t = 時,PE=PF .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.
(1)寫出數(shù)軸上點B表示的數(shù);
(2)若點M、N分別是線段AO、BO的中點,求線段MN的長;
(3)若動點P從點A出發(fā).以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).問點P運動多少秒時追上點Q?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com