【題目】如圖,點(diǎn) A,B,C 的坐標(biāo)分別是(2,1),(6,1),(3,5),若△A1B1C1 與△ABC 關(guān)于x 軸對(duì)稱
(1)在平面直角坐標(biāo)系中畫出△A1B1C1,并寫出 A1,B1,C1 三個(gè)點(diǎn)的坐標(biāo)
(2)求出△A1B1C1的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B.C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點(diǎn)B,C在∠MAN的邊AM、AN上,點(diǎn)E,F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E.F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為18,求△ACF與△BDE的面積之和是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=38°,D,E分別為AB,AC上一點(diǎn),將△BCD,△ADE沿CD,DE翻折,點(diǎn)A,B恰好重合于點(diǎn)P處,則∠ACP=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問題
(1)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出將△ABC關(guān)于原點(diǎn)O對(duì)稱的圖形△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門票是_____元,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____元;
(2)當(dāng)時(shí),求與的函數(shù)表達(dá)式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點(diǎn),AD與BE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,請(qǐng)回答下列問題
材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長(zhǎng),求它的面積.用現(xiàn)代式子表示即為:S=…①(其中a,b,c為三角形的三邊長(zhǎng),S為面積)而另一個(gè)文明古國(guó)古希臘也有求三角形面積的“海倫公式”;S=……②(其中p=)
材料二:對(duì)于平方差公式:a2﹣b2=(a+b)(a﹣b)
公式逆用可得:(a+b)(a﹣b)=a2﹣b2,
例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c)
(1)若已知三角形的三邊長(zhǎng)分別為3、4、5,請(qǐng)?jiān)嚪謩e運(yùn)用公式①和公式②,計(jì)算該三角形的面積;
(2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋嚕?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx+3的圖象與x軸正半軸交于B、C兩點(diǎn),BC=2,則b的值為( )
A.4 B.﹣4 C.±4 D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正確的有____________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com