【題目】如圖①,在菱形中,,邊上一動(dòng)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)勻速運(yùn)動(dòng),速度為,過(guò)點(diǎn)作,垂足為,以為邊長(zhǎng)作等邊,點(diǎn),在直線(xiàn)的異側(cè),連接.點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)當(dāng)時(shí),_______;(直接寫(xiě)出答案)
(2)連接,若為等腰三角形,求的值;
(3)如圖②,經(jīng)過(guò)點(diǎn)、、作,連接,當(dāng)與相切時(shí),則的值等于_______(直接寫(xiě)出答案)
【答案】(1);(2)當(dāng),秒時(shí),為等腰三角形;(3)當(dāng)與相切時(shí),則
【解析】
(1)當(dāng)時(shí),BM=4,AM=6,在Rt△BMN中解直角三角形求得MN;再根據(jù)等邊三角形的性質(zhì)得到MP=MN,然后再說(shuō)明∠AMP=90°,最后在Rt△APM運(yùn)用勾股定理解答即可.
(2)先說(shuō)明、,再在中解三角形用t表示出AP,最后分PA=PB、PB=BA、PA=AB三種情況分別求解即可;
(3)設(shè)BP的中點(diǎn)為O點(diǎn),連接MD.先說(shuō)明∠BMO=∠DMP;然后再延長(zhǎng)AB,過(guò)D作DE⊥AE,交于E點(diǎn).可得DE//MP,進(jìn)一步說(shuō)明∠EDM=∠BMO;再證△BMP∽△DEM,最后運(yùn)用相似三角形的性質(zhì)解答即可.
解:(1)當(dāng)時(shí),BM=4,AM=6
∵,,
∴MN=BM·sin∠ABC=4×=2,∠NMN=30°
∴∠AMP=90°
∵是等邊三角形
∴MP=MN=2
在Rt△APM中,運(yùn)用勾股定理得:
AP=
故答案為4.
(2)如圖:連接BP
,,
等邊
,
在中
在中,
.
①若即
則(秒)
②若即
(秒)
③若即
則
(舍),(舍)
綜上所述:當(dāng),秒時(shí),為等腰三角形.
(3)設(shè)BP的中點(diǎn)為O點(diǎn),連接MD.
∵MD與圓0相切
∴MO⊥MD
∴∠DMO=∠BMP=90°
∴∠BMO=∠DMP,
延長(zhǎng)AB,過(guò)D作DE⊥AE,交于E點(diǎn)
∴DE//MP,
∴∠EDM=∠DMP
∴∠EDM=∠BMO,
在△BMO中,BO=MO,
∴∠MBO =∠BMO,
∴∠EDM=∠BMO,
∴△BMP∽△DEM,
∴
在Rt△ADE中,AD= 10,∠EAD=60°,
∵AE = 5,DE=5
∴ME = 15-2t,
∴
解得t1=,t2=0,
∵t>0,
∴t=
∴當(dāng)與相切時(shí),則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)生態(tài)文明建設(shè),甲、乙兩工程隊(duì)同時(shí)為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊(duì)所鋪設(shè)草坪的面積(米)與施工時(shí)間(時(shí))之間關(guān)系的近似可以用此圖象描述.請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)從工作2小時(shí)開(kāi)始,施工方從乙隊(duì)抽調(diào)兩人對(duì)草坪進(jìn)行灌溉,乙隊(duì)速度有所降低,求乙隊(duì)在工作2小時(shí)后與的函數(shù)關(guān)系式;
(2)求乙隊(duì)降速后,何時(shí)鋪設(shè)草坪面積為甲隊(duì)的?
(3)乙隊(duì)降速后,甲乙兩隊(duì)鋪設(shè)草坪速度之比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病非肺炎防護(hù)知識(shí)的了解,通過(guò)微信群宣傳新型冠狀病毒肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線(xiàn)參與作答《2020年新型冠狀病毒防治全國(guó)統(tǒng)一考試(全國(guó)卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取名人員的答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過(guò)程如下:
收集數(shù)據(jù)
甲小區(qū):
乙小區(qū):
整理數(shù)據(jù)
成績(jī)(分) | ||||
甲小區(qū) | ||||
乙小區(qū) |
分析數(shù)據(jù)
統(tǒng)計(jì)量 | 平均數(shù) | 中位教 | 眾數(shù) |
甲小區(qū) | |||
乙小區(qū) |
應(yīng)用數(shù)據(jù)
(1)填空:_ _;
(2)若甲小區(qū)共有人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于分的人數(shù);
(3)社區(qū)管理員看完統(tǒng)計(jì)數(shù)據(jù),認(rèn)為甲小區(qū)對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)掌握更好,請(qǐng)你寫(xiě)出社區(qū)管理員的理由(至少寫(xiě)出一條) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)小組對(duì)函數(shù)y1=圖象和性質(zhì)進(jìn)行探究.當(dāng)x=4時(shí),y1=0.
(1)當(dāng)x=5時(shí),求y1的值;
(2)在給出的平面直角坐標(biāo)系中,補(bǔ)全這個(gè)函數(shù)的圖象,并寫(xiě)出這個(gè)函數(shù)的一條性質(zhì);
(3)進(jìn)一步探究函數(shù)圖象并解決問(wèn)題:已知函數(shù)y2=﹣的圖象如圖所示,結(jié)合函數(shù)y1的圖象,直接寫(xiě)出不等式y1≥y2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,為邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),以為邊長(zhǎng)作正方形,連接,則的面積的最大值等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】朝陽(yáng)公司以10元/千克的價(jià)格收購(gòu)一批產(chǎn)品進(jìn)行銷(xiāo)售,經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)格x(元/千克)之間是一次函數(shù)關(guān)系,當(dāng)銷(xiāo)售價(jià)格x是10元/千克時(shí),日銷(xiāo)售量y是300千克,當(dāng)銷(xiāo)售價(jià)格x是20元/千克時(shí),日銷(xiāo)售量y是150千克.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)朝陽(yáng)公司應(yīng)該如何確定這批產(chǎn)品的銷(xiāo)售價(jià)格,才能使日銷(xiāo)售利潤(rùn)W1元最大?
(3)若朝陽(yáng)公司每銷(xiāo)售1千克這種產(chǎn)品需支出a元(a>0)的相關(guān)費(fèi)用,當(dāng)20≤x≤25時(shí),公司的日獲利W2元的最大值為1215元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為l的正方形ABCD中,E是邊CD的中點(diǎn),點(diǎn)P是邊AD上一點(diǎn)(與點(diǎn)A、D不重合),射線(xiàn)PE與BC的延長(zhǎng)線(xiàn)交于點(diǎn)Q.
(1)求證:;
(2)過(guò)點(diǎn)E作交PB于點(diǎn)F,連結(jié)AF,當(dāng)時(shí),①求證:四邊形AFEP是平行四邊形;
②請(qǐng)判斷四邊形AFEP是否為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)D在邊OC上,且BD=OC,以BD為邊向下作矩形BDEF,使得點(diǎn)E在邊OA上,反比例函數(shù)y(k≠0)的圖象經(jīng)過(guò)邊EF與AB的交點(diǎn)G.若AG,DE=2,則k的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)E在BC邊上,且CA=CE,過(guò)A,C,E三點(diǎn)的⊙O交AB于另一點(diǎn)F,作直徑AD,連結(jié)DE并延長(zhǎng)交AB于點(diǎn)G,連結(jié)CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當(dāng)BE=4,CD=AB時(shí),求⊙O的直徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com