【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
⑴求拋物線的解析式及點(diǎn)C的坐標(biāo);
⑵求證:△ABC是直角三角形;
⑶若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2+2x;C(-1,-3);(2)證明過程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).
【解析】
(1)可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);
(2)分別過A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;
(3)設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長度,當(dāng)△MON和△ABC相似時,利用三角形相似的性質(zhì)可得或,可求得N點(diǎn)的坐標(biāo).
解:(1)∵頂點(diǎn)坐標(biāo)為(1,1),
∴設(shè)拋物線解析式為y=a(x-1)2+1,
又拋物線過原點(diǎn),
∴0=a(0-1)2+1,解得a=-1,
∴拋物線解析式為y=-(x-1)2+1,
即y=-x2+2x,
聯(lián)立拋物線和直線解析式可得 ,
解得或 ,
∴B(2,0),C(-1,-3);
(2)如圖,分別過A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),
則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,
∴∠ABO=∠CBO=45°,即∠ABC=90°,
∴△ABC是直角三角形;
(3)假設(shè)存在滿足條件的點(diǎn)N,設(shè)N(x,0),則M(x,-x2+2x),
∴ON=|x|,MN=|-x2+2x|,
由(2)在Rt△ABD和Rt△CEB中,可分別求得AB= ,BC=3,
∵M(jìn)N⊥x軸于點(diǎn)N
∴∠ABC=∠MNO=90°,
∴當(dāng)△ABC和△MNO相似時有或,
當(dāng)時,則有 ,即|x||-x+2|=|x|,
∵當(dāng)x=0時M、O、N不能構(gòu)成三角形,
∴x≠0,
∴|-x+2|=,即-x+2=± ,解得x= 或x= ,
此時N點(diǎn)坐標(biāo)為(,0)或(,0);
②當(dāng)時,則有,即|x||-x+2|=3|x|,
∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,
此時N點(diǎn)坐標(biāo)為(-1,0)或(5,0),
綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為( ,0)或( ,0)或(-1,0)或(5,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,下列結(jié)論正確的是( )
A. abc<0
B. 3a+c=0
C. 4a﹣2b+c<0
D. 方程ax2+bx+c=﹣2(a≠0)有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BD,CD⊥BD點(diǎn)P是BD上一點(diǎn).
(1)若∠APC=90°.求證:△PAB∽△CPD;
(2)若△PAB與△PCD相似,AB=9,BP=6,CD=4.求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)是邊上一動點(diǎn)(不與點(diǎn)重合),過點(diǎn)作交邊于點(diǎn),將沿直線翻折,點(diǎn)落在射線上的點(diǎn)處,當(dāng)為直角三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點(diǎn)D,過點(diǎn)C作CF∥AB,與過點(diǎn)B的切線交于點(diǎn)F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),AB⊥x軸于B,且S△ABO=.
(1)直接寫出這兩個函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com